|
||
---|---|---|
.. | ||
docs | ||
lib | ||
package.json | ||
README.md |
incrmeanvar
Compute an arithmetic mean and an unbiased sample variance incrementally.
The arithmetic mean is defined as
and the unbiased sample variance is defined as
Usage
var incrmeanvar = require( '@stdlib/stats/incr/meanvar' );
incrmeanvar( [out] )
Returns an accumulator function
which incrementally computes an arithmetic mean and unbiased sample variance.
var accumulator = incrmeanvar();
By default, the returned accumulator function
returns the accumulated values as a two-element array
. To avoid unnecessary memory allocation, the function supports providing an output (destination) object.
var Float64Array = require( '@stdlib/array/float64' );
var accumulator = incrmeanvar( new Float64Array( 2 ) );
accumulator( [x] )
If provided an input value x
, the accumulator function returns updated accumulated values. If not provided an input value x
, the accumulator function returns the current accumulated values.
var accumulator = incrmeanvar();
var mv = accumulator();
// returns null
mv = accumulator( 2.0 );
// returns [ 2.0, 0.0 ]
mv = accumulator( 1.0 );
// returns [ 1.5, 0.5 ]
mv = accumulator( 3.0 );
// returns [ 2.0, 1.0 ]
mv = accumulator( -7.0 );
// returns [ -0.25, ~20.92 ]
mv = accumulator( -5.0 );
// returns [ -1.2, 20.2 ]
mv = accumulator();
// returns [ -1.2, 20.2 ]
Notes
- Input values are not type checked. If provided
NaN
, the accumulated values are equal toNaN
for all future invocations. If non-numeric inputs are possible, you are advised to type check and handle accordingly before passing the value to the accumulator function.
Examples
var randu = require( '@stdlib/random/base/randu' );
var Float64Array = require( '@stdlib/array/float64' );
var ArrayBuffer = require( '@stdlib/array/buffer' );
var incrmeanvar = require( '@stdlib/stats/incr/meanvar' );
var offset;
var acc;
var buf;
var out;
var mv;
var N;
var v;
var i;
var j;
// Define the number of accumulators:
N = 5;
// Create an array buffer for storing accumulator output:
buf = new ArrayBuffer( N*2*8 ); // 8 bytes per element
// Initialize accumulators:
acc = [];
for ( i = 0; i < N; i++ ) {
// Compute the byte offset:
offset = i * 2 * 8; // stride=2, bytes_per_element=8
// Create a new view for storing accumulated values:
out = new Float64Array( buf, offset, 2 );
// Initialize an accumulator which will write results to the view:
acc.push( incrmeanvar( out ) );
}
// Simulate data and update the sample means and variances...
for ( i = 0; i < 100; i++ ) {
for ( j = 0; j < N; j++ ) {
v = randu() * 100.0 * (j+1);
acc[ j ]( v );
}
}
// Print the final results:
console.log( 'Mean\tVariance' );
for ( i = 0; i < N; i++ ) {
mv = acc[ i ]();
console.log( '%d\t%d', mv[ 0 ].toFixed( 3 ), mv[ 1 ].toFixed( 3 ) );
}