|
|
||
|---|---|---|
| .. | ||
| docs | ||
| lib | ||
| package.json | ||
| README.md | ||
increwstdev
Compute an exponentially weighted standard deviation incrementally.
An exponentially weighted variance can be defined recursively as
where μ is the exponentially weighted mean. The exponentially weighted standard deviation is the square root of the exponentially weighted variance.
Usage
var increwstdev = require( '@stdlib/stats/incr/ewstdev' );
increwstdev( alpha )
Returns an accumulator function which incrementally computes an exponentially weighted standard deviation, where alpha is a smoothing factor between 0 and 1.
var accumulator = increwstdev( 0.5 );
accumulator( [x] )
If provided an input value x, the accumulator function returns an updated standard deviation. If not provided an input value x, the accumulator function returns the current standard deviation.
var accumulator = increwstdev( 0.5 );
var s = accumulator();
// returns null
s = accumulator( 2.0 );
// returns 0.0
s = accumulator( 1.0 );
// returns 0.5
s = accumulator( 3.0 );
// returns ~0.83
s = accumulator();
// returns ~0.83
Notes
- Input values are not type checked. If provided
NaNor a value which, when used in computations, results inNaN, the accumulated value isNaNfor all future invocations. If non-numeric inputs are possible, you are advised to type check and handle accordingly before passing the value to the accumulator function.
Examples
var randu = require( '@stdlib/random/base/randu' );
var increwstdev = require( '@stdlib/stats/incr/ewstdev' );
var accumulator;
var v;
var i;
// Initialize an accumulator:
accumulator = increwstdev( 0.5 );
// For each simulated datum, update the exponentially weighted standard deviation...
for ( i = 0; i < 100; i++ ) {
v = randu() * 100.0;
accumulator( v );
}
console.log( accumulator() );