time-to-botec/js/node_modules/@stdlib/stats/base/dnanvariancepn/lib/dnansumpw.js
NunoSempere b6addc7f05 feat: add the node modules
Necessary in order to clearly see the squiggle hotwiring.
2022-12-03 12:44:49 +00:00

186 lines
4.1 KiB
JavaScript
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/**
* @license Apache-2.0
*
* Copyright (c) 2020 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
'use strict';
// MODULES //
var floor = require( '@stdlib/math/base/special/floor' );
// VARIABLES //
// Blocksize for pairwise summation (NOTE: decreasing the blocksize decreases rounding error as more pairs are summed, but also decreases performance. Because the inner loop is unrolled eight times, the blocksize is effectively `16`.):
var BLOCKSIZE = 128;
// MAIN //
/**
* Computes the sum of a double-precision floating-point strided array elements, ignoring `NaN` values and using pairwise summation.
*
* ## Method
*
* - This implementation uses pairwise summation, which accrues rounding error `O(log2 N)` instead of `O(N)`. The recursion depth is also `O(log2 N)`.
*
* ## References
*
* - Higham, Nicholas J. 1993. "The Accuracy of Floating Point Summation." _SIAM Journal on Scientific Computing_ 14 (4): 78399. doi:[10.1137/0914050](https://doi.org/10.1137/0914050).
*
* @private
* @param {PositiveInteger} N - number of indexed elements
* @param {NumericArray} out - two-element output array whose first element is the accumulated sum and whose second element is the accumulated number of summed values
* @param {Float64Array} x - input array
* @param {integer} stride - stride length
* @param {NonNegativeInteger} offset - starting index
* @returns {NumericArray} output array
*
* @example
* var Float64Array = require( '@stdlib/array/float64' );
* var floor = require( '@stdlib/math/base/special/floor' );
*
* var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN ] );
* var N = floor( x.length / 2 );
*
* var out = [ 0.0, 0 ];
* var v = dnansumpw( N, out, x, 2, 1 );
* // returns [ 5.0, 4 ]
*/
function dnansumpw( N, out, x, stride, offset ) {
var ix;
var s0;
var s1;
var s2;
var s3;
var s4;
var s5;
var s6;
var s7;
var M;
var s;
var n;
var v;
var i;
ix = offset;
if ( N < 8 ) {
// Use simple summation...
s = 0.0;
n = 0;
for ( i = 0; i < N; i++ ) {
v = x[ ix ];
if ( v === v ) {
s += v;
n += 1;
}
ix += stride;
}
out[ 0 ] += s;
out[ 1 ] += n;
return out;
}
if ( N <= BLOCKSIZE ) {
// Sum a block with 8 accumulators (by loop unrolling, we lower the effective blocksize to 16)...
s0 = 0.0;
s1 = 0.0;
s2 = 0.0;
s3 = 0.0;
s4 = 0.0;
s5 = 0.0;
s6 = 0.0;
s7 = 0.0;
n = 0;
M = N % 8;
for ( i = 0; i < N-M; i += 8 ) {
v = x[ ix ];
if ( v === v ) {
s0 += v;
n += 1;
}
ix += stride;
v = x[ ix ];
if ( v === v ) {
s1 += v;
n += 1;
}
ix += stride;
v = x[ ix ];
if ( v === v ) {
s2 += v;
n += 1;
}
ix += stride;
v = x[ ix ];
if ( v === v ) {
s3 += v;
n += 1;
}
ix += stride;
v = x[ ix ];
if ( v === v ) {
s4 += v;
n += 1;
}
ix += stride;
v = x[ ix ];
if ( v === v ) {
s5 += v;
n += 1;
}
ix += stride;
v = x[ ix ];
if ( v === v ) {
s6 += v;
n += 1;
}
ix += stride;
v = x[ ix ];
if ( v === v ) {
s7 += v;
n += 1;
}
ix += stride;
}
// Pairwise sum the accumulators:
s = ((s0+s1) + (s2+s3)) + ((s4+s5) + (s6+s7));
// Clean-up loop...
for ( i; i < N; i++ ) {
v = x[ ix ];
if ( v === v ) {
s += v;
n += 1;
}
ix += stride;
}
out[ 0 ] += s;
out[ 1 ] += n;
return out;
}
// Recurse by dividing by two, but avoiding non-multiples of unroll factor...
n = floor( N/2 );
n -= n % 8;
return dnansumpw( n, out, x, stride, ix ) + dnansumpw( N-n, out, x, stride, ix+(n*stride) ); // eslint-disable-line max-len
}
// EXPORTS //
module.exports = dnansumpw;