|
||
---|---|---|
.. | ||
docs | ||
lib | ||
package.json | ||
README.md |
Logarithm of Cumulative Distribution Function
Weibull distribution logarithm of cumulative distribution function.
The cumulative distribution function for a Weibull random variable is
where lambda > 0
is the shape parameter and k > 0
is the scale parameter.
Usage
var logcdf = require( '@stdlib/stats/base/dists/weibull/logcdf' );
logcdf( x, k, lambda )
Evaluates the natural logarithm of the cumulative distribution function (CDF) for a Weibull distribution with shape parameter k
and scale parameter lambda
.
var y = logcdf( 2.0, 1.0, 0.5 );
// returns ~-0.018
y = logcdf( 0.0, 0.5, 1.0 );
// returns -Infinity
y = logcdf( -Infinity, 4.0, 2.0 );
// returns -Infinity
y = logcdf( +Infinity, 4.0, 2.0 );
// returns 0.0
If provided NaN
as any argument, the function returns NaN
.
var y = logcdf( NaN, 1.0, 1.0 );
// returns NaN
y = logcdf( 0.0, NaN, 1.0 );
// returns NaN
y = logcdf( 0.0, 1.0, NaN );
// returns NaN
If provided k <= 0
, the function returns NaN
.
var y = logcdf( 2.0, -1.0, 0.5 );
// returns NaN
y = logcdf( 2.0, 0.0, 0.5 );
// returns NaN
If provided lambda <= 0
, the function returns NaN
.
var y = logcdf( 2.0, 0.5, -1.0 );
// returns NaN
y = logcdf( 2.0, 0.5, 0.0 );
// returns NaN
logcdf.factory( k, lambda )
Returns a function for evaluating the cumulative distribution function of a Weibull distribution with shape parameter k
and scale parameter lambda
.
var mylogcdf = logcdf.factory( 2.0, 10.0 );
var y = mylogcdf( 10.0 );
// returns ~-0.459
y = mylogcdf( 8.0 );
// returns ~-0.749
Notes
- In virtually all cases, using the
logpdf
orlogcdf
functions is preferable to manually computing the logarithm of thepdf
orcdf
, respectively, since the latter is prone to overflow and underflow.
Examples
var randu = require( '@stdlib/random/base/randu' );
var logcdf = require( '@stdlib/stats/base/dists/weibull/logcdf' );
var lambda;
var k;
var x;
var y;
var i;
for ( i = 0; i < 10; i++ ) {
x = randu() * 10.0;
lambda = randu() * 10.0;
k = randu() * 10.0;
y = logcdf( x, lambda, k );
console.log( 'x: %d, k: %d, λ: %d, ln(F(x;k,λ)): %d', x, k, lambda, y );
}