time-to-botec/js/node_modules/@stdlib/stats/base/dists/triangular/cdf
NunoSempere b6addc7f05 feat: add the node modules
Necessary in order to clearly see the squiggle hotwiring.
2022-12-03 12:44:49 +00:00
..
docs feat: add the node modules 2022-12-03 12:44:49 +00:00
lib feat: add the node modules 2022-12-03 12:44:49 +00:00
package.json feat: add the node modules 2022-12-03 12:44:49 +00:00
README.md feat: add the node modules 2022-12-03 12:44:49 +00:00

Cumulative Distribution Function

Triangular distribution cumulative distribution function.

The cumulative distribution function for a triangular random variable is

Cumulative distribution function for a Triangular distribution.

where a is the lower limit, b is the upper limit, and c is the mode.

Usage

var cdf = require( '@stdlib/stats/base/dists/triangular/cdf' );

cdf( x, a, b, c )

Evaluates the cumulative distribution function (CDF) for a triangular distribution with parameters a (lower limit), b (upper limit) and c (mode).

var y = cdf( 0.5, -1.0, 1.0, 0.0 );
// returns 0.875

y = cdf( 0.5, -1.0, 1.0, 0.5 );
// returns 0.75

y = cdf( -10.0, -20.0, 0.0, -2.0 );
// returns ~0.278

y = cdf( -2.0, -1.0, 1.0, 0.0 );
// returns 0.0

If provided NaN as any argument, the function returns NaN.

var y = cdf( NaN, 0.0, 1.0, 0.5 );
// returns NaN

y = cdf( 0.0, NaN, 1.0, 0.5 );
// returns NaN

y = cdf( 0.0, 0.0, NaN, 0.5 );
// returns NaN

y = cdf( 2.0, 1.0, 0.0, NaN );
// returns NaN

If provided parameters not satisfying a <= c <= b, the function returns NaN.

var y = cdf( 2.0, 1.0, 0.0, 1.5 );
// returns NaN

y = cdf( 2.0, 1.0, 0.0, -1.0 );
// returns NaN

y = cdf( 2.0, 0.0, -1.0, 0.5 );
// returns NaN

cdf.factory( a, b, c )

Returns a function for evaluating the cumulative distribution function of a triangular distribution with parameters a (lower limit), b (upper limit) and c (mode).

var mycdf = cdf.factory( 0.0, 10.0, 2.0 );
var y = mycdf( 0.5 );
// returns 0.0125

y = mycdf( 8.0 );
// returns 0.95

Examples

var randu = require( '@stdlib/random/base/randu' );
var cdf = require( '@stdlib/stats/base/dists/triangular/cdf' );

var a;
var b;
var c;
var x;
var y;
var i;

for ( i = 0; i < 25; i++ ) {
    x = randu() * 30.0;
    a = randu() * 10.0;
    b = a + (randu() * 40.0);
    c = a + ((b-a) * randu());
    y = cdf( x, a, b, c );
    console.log( 'x: %d, a: %d, b: %d, c: %d, F(x;a,b,c): %d', x.toFixed( 4 ), a.toFixed( 4 ), b.toFixed( 4 ), c.toFixed( 4 ), y.toFixed( 4 ) );
}