|
||
---|---|---|
.. | ||
docs | ||
lib | ||
package.json | ||
README.md |
Logarithm of Probability Density Function
Rayleigh distribution logarithm of probability density function (PDF).
The probability density function (PDF) for a Rayleigh random variable is
where sigma > 0
is the scale parameter.
Usage
var logpdf = require( '@stdlib/stats/base/dists/rayleigh/logpdf' );
logpdf( x, sigma )
Evaluates the logarithm of the probability density function for a Rayleigh distribution with scale parameter sigma
.
var y = logpdf( 0.3, 1.0 );
// returns ~-1.249
y = logpdf( 2.0, 0.8 );
// returns ~-1.986
y = logpdf( -1.0, 0.5 );
// returns -Infinity
If provided NaN
as any argument, the function returns NaN
.
var y = logpdf( NaN, 1.0 );
// returns NaN
y = logpdf( 0.0, NaN );
// returns NaN
If provided sigma < 0
, the function returns NaN
.
var y = logpdf( 2.0, -1.0 );
// returns NaN
If provided sigma = 0
, the function evaluates the PDF of a degenerate distribution centered at 0
.
var y = logpdf( -2.0, 0.0 );
// returns -Infinity
y = logpdf( 0.0, 0.0 );
// returns +Infinity
y = logpdf( 2.0, 0.0 );
// returns -Infinity
logpdf.factory( sigma )
Returns a function for evaluating the logarithm of the probability density function (PDF) of a Rayleigh distribution with parameter sigma
(scale parameter).
var mylogpdf = logpdf.factory( 4.0 );
var y = mylogpdf( 6.0 );
// returns ~-2.106
y = mylogpdf( 4.0 );
// returns ~-1.886
Notes
- In virtually all cases, using the
logpdf
orlogcdf
functions is preferable to manually computing the logarithm of thepdf
orcdf
, respectively, since the latter is prone to overflow and underflow.
Examples
var randu = require( '@stdlib/random/base/randu' );
var logpdf = require( '@stdlib/stats/base/dists/rayleigh/logpdf' );
var sigma;
var x;
var y;
var i;
for ( i = 0; i < 10; i++ ) {
x = randu() * 10.0;
sigma = randu() * 10.0;
y = logpdf( x, sigma );
console.log( 'x: %d, σ: %d, f(x;σ): %d', x.toFixed( 4 ), sigma.toFixed( 4 ), y.toFixed( 4 ) );
}