time-to-botec/js/node_modules/@stdlib/stats/base/dists/logistic/logpdf
NunoSempere b6addc7f05 feat: add the node modules
Necessary in order to clearly see the squiggle hotwiring.
2022-12-03 12:44:49 +00:00
..
docs feat: add the node modules 2022-12-03 12:44:49 +00:00
lib feat: add the node modules 2022-12-03 12:44:49 +00:00
package.json feat: add the node modules 2022-12-03 12:44:49 +00:00
README.md feat: add the node modules 2022-12-03 12:44:49 +00:00

Logarithm of Probability Density Function

Logistic distribution logarithm of probability density function (PDF).

The probability density function (PDF) for a logistic random variable is

Probability density function (PDF) for a logistic distribution.

where mu is the location parameter and s is the scale parameter.

Usage

var logpdf = require( '@stdlib/stats/base/dists/logistic/logpdf' );

logpdf( x, mu, s )

Evaluates the logarithm of the probability density function (PDF) for a logistic distribution with parameters mu (location parameter) and s (scale parameter).

var y = logpdf( 2.0, 0.0, 1.0 );
// returns ~-2.254

y = logpdf( -1.0, 4.0, 4.0 );
// returns ~-3.14

If provided NaN as any argument, the function returns NaN.

var y = logpdf( NaN, 0.0, 1.0 );
// returns NaN

y = logpdf( 0.0, NaN, 1.0 );
// returns NaN

y = logpdf( 0.0, 0.0, NaN );
// returns NaN

If provided s < 0, the function returns NaN.

var y = logpdf( 2.0, 0.0, -1.0 );
// returns NaN

If provided s = 0, the function evaluates the logarithm of the PDF of a degenerate distribution centered at mu.

var y = logpdf( 2.0, 8.0, 0.0 );
// returns -Infinity

y = logpdf( 8.0, 8.0, 0.0 );
// returns Infinity

logpdf.factory( mu, s )

Returns a function for evaluating the logarithm of the probability density function (PDF) of a logistic distribution with parameters mu (location parameter) and s (scale parameter).

var mylogpdf = logpdf.factory( 10.0, 2.0 );

var y = mylogpdf( 10.0 );
// returns ~-2.079

y = mylogpdf( 5.0 );
// returns ~-3.351

Notes

  • In virtually all cases, using the logpdf or logcdf functions is preferable to manually computing the logarithm of the pdf or cdf, respectively, since the latter is prone to overflow and underflow.

Examples

var randu = require( '@stdlib/random/base/randu' );
var logpdf = require( '@stdlib/stats/base/dists/logistic/logpdf' );

var mu;
var s;
var x;
var y;
var i;

for ( i = 0; i < 10; i++ ) {
    x = randu() * 10.0;
    mu = randu() * 10.0;
    s = randu() * 10.0;
    y = logpdf( x, mu, s );
    console.log( 'x: %d, µ: %d, s: %d, ln(f(x;µ,s)): %d', x, mu, s, y );
}