|
||
---|---|---|
.. | ||
docs | ||
lib | ||
package.json | ||
README.md |
Logarithm of Cumulative Distribution Function
Gamma distribution logarithm of cumulative distribution function (CDF).
The cumulative distribution function for a gamma random variable is
where alpha
is the shape parameter and beta
is the rate parameter of the distribution. gamma
is the lower incomplete gamma function.
Usage
var logcdf = require( '@stdlib/stats/base/dists/gamma/logcdf' );
logcdf( x, alpha, beta )
Evaluates the natural logarithm of the cumulative distribution function (CDF) for a gamma distribution with parameters alpha
(shape parameter) and beta
(rate parameter).
var y = logcdf( 2.0, 0.5, 1.0 );
// returns ~-0.047
y = logcdf( 0.1, 1.0, 1.0 );
// returns ~-2.352
y = logcdf( -1.0, 4.0, 2.0 );
// returns -Infinity
If provided NaN
as any argument, the function returns NaN
.
var y = logcdf( NaN, 1.0, 1.0 );
// returns NaN
y = logcdf( 0.0, NaN, 1.0 );
// returns NaN
y = logcdf( 0.0, 1.0, NaN );
// returns NaN
If provided alpha < 0
, the function returns NaN
.
var y = logcdf( 2.0, -0.5, 1.0 );
// returns NaN
If provided alpha = 0
, the function evaluates the logarithm of the CDF for a degenerate distribution centered at 0
.
var y = logcdf( 2.0, 0.0, 2.0 );
// returns 0.0
y = logcdf( -2.0, 0.0, 2.0 );
// returns -Infinity
y = logcdf( 0.0, 0.0, 2.0 );
// returns 0.0
If provided beta <= 0
, the function returns NaN
.
var y = logcdf( 2.0, 1.0, 0.0 );
// returns NaN
y = logcdf( 2.0, 1.0, -1.0 );
// returns NaN
logcdf.factory( alpha, beta )
Returns a function
for evaluating the natural logarithm of the CDF for a gamma distribution with parameters alpha
(shape parameter) and beta
(rate parameter).
var mylogcdf = logcdf.factory( 3.0, 1.5 );
var y = mylogcdf( 1.0 );
// returns ~-1.655
y = mylogcdf( 4.0 );
// returns ~-0.064
Examples
var randu = require( '@stdlib/random/base/randu' );
var logcdf = require( '@stdlib/stats/base/dists/gamma/logcdf' );
var alpha;
var beta;
var x;
var y;
var i;
for ( i = 0; i < 10; i++ ) {
x = randu() * 3.0;
alpha = randu() * 5.0;
beta = randu() * 5.0;
y = logcdf( x, alpha, beta );
console.log( 'x: %d, α: %d, β: %d, ln(F(x;α,β)): %d', x.toFixed( 4 ), alpha.toFixed( 4 ), beta.toFixed( 4 ), y.toFixed( 4 ) );
}