time-to-botec/js/node_modules/@stdlib/stats/base/dists/beta/mgf
NunoSempere b6addc7f05 feat: add the node modules
Necessary in order to clearly see the squiggle hotwiring.
2022-12-03 12:44:49 +00:00
..
docs feat: add the node modules 2022-12-03 12:44:49 +00:00
lib feat: add the node modules 2022-12-03 12:44:49 +00:00
package.json feat: add the node modules 2022-12-03 12:44:49 +00:00
README.md feat: add the node modules 2022-12-03 12:44:49 +00:00

Moment-Generating Function

Beta distribution moment-generating function (MGF).

The moment-generating function for a beta random variable is

Moment-generating function (MGF) for a beta distribution.

where alpha > 0 is the first shape parameter and beta > 0 is the second shape parameter.

Usage

var mgf = require( '@stdlib/stats/base/dists/beta/mgf' );

mgf( t, alpha, beta )

Evaluates the moment-generating function (MGF) for a beta distribution with parameters alpha (first shape parameter) and beta (second shape parameter).

var y = mgf( 0.5, 1.0, 1.0 );
// returns ~1.297

y = mgf( 0.5, 2.0, 4.0 );
// returns ~1.186

y = mgf( 3.0, 2.0, 2.0 );
// returns ~5.575

y = mgf( -0.8, 4.0, 4.0 );
// returns ~0.676

If provided NaN as any argument, the function returns NaN.

var y = mgf( NaN, 1.0, 1.0 );
// returns NaN

y = mgf( 0.0, NaN, 1.0 );
// returns NaN

y = mgf( 0.0, 1.0, NaN );
// returns NaN

If provided alpha <= 0, the function returns NaN.

var y = mgf( 2.0, -1.0, 0.5 );
// returns NaN

y = mgf( 2.0, 0.0, 0.5 );
// returns NaN

If provided beta <= 0, the function returns NaN.

var y = mgf( 2.0, 0.5, -1.0 );
// returns NaN

y = mgf( 2.0, 0.5, 0.0 );
// returns NaN

mgf.factory( alpha, beta )

Returns a function for evaluating the moment-generating function for a beta distribution with parameters alpha (first shape parameter) and beta (second shape parameter).

var mymgf = mgf.factory( 0.5, 0.5 );

var y = mymgf( 0.8 );
// returns ~1.552

y = mymgf( 0.3 );
// returns ~1.168

Examples

var randu = require( '@stdlib/random/base/randu' );
var EPS = require( '@stdlib/constants/float64/eps' );
var mgf = require( '@stdlib/stats/base/dists/beta/mgf' );

var alpha;
var beta;
var t;
var v;
var i;

for ( i = 0; i < 10; i++ ) {
    t = randu() * 20.0;
    alpha = ( randu()*5.0 ) + EPS;
    beta = ( randu()*5.0 ) + EPS;
    v = mgf( t, alpha, beta );
    console.log( 't: %d, α: %d, β: %d, M_X(t;α,β): %d', t.toFixed( 4 ), alpha.toFixed( 4 ), beta.toFixed( 4 ), v.toFixed( 4 ) );
}