340 lines
10 KiB
JavaScript
340 lines
10 KiB
JavaScript
/**
|
|
* @license Apache-2.0
|
|
*
|
|
* Copyright (c) 2021 The Stdlib Authors.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
'use strict';
|
|
|
|
// MODULES //
|
|
|
|
var iterationOrder = require( './../../../base/iteration-order' );
|
|
var minmaxViewBufferIndex = require( './../../../base/minmax-view-buffer-index' );
|
|
var copy = require( './copy_ndarray.js' );
|
|
var blockedaccessorunary2d = require( './2d_blocked_accessors.js' );
|
|
var blockedaccessorunary3d = require( './3d_blocked_accessors.js' );
|
|
var blockedaccessorunary4d = require( './4d_blocked_accessors.js' );
|
|
var blockedaccessorunary5d = require( './5d_blocked_accessors.js' );
|
|
var blockedaccessorunary6d = require( './6d_blocked_accessors.js' );
|
|
var blockedaccessorunary7d = require( './7d_blocked_accessors.js' );
|
|
var blockedaccessorunary8d = require( './8d_blocked_accessors.js' );
|
|
var blockedaccessorunary9d = require( './9d_blocked_accessors.js' );
|
|
var blockedaccessorunary10d = require( './10d_blocked_accessors.js' );
|
|
var blockedunary2d = require( './2d_blocked.js' );
|
|
var blockedunary3d = require( './3d_blocked.js' );
|
|
var blockedunary4d = require( './4d_blocked.js' );
|
|
var blockedunary5d = require( './5d_blocked.js' );
|
|
var blockedunary6d = require( './6d_blocked.js' );
|
|
var blockedunary7d = require( './7d_blocked.js' );
|
|
var blockedunary8d = require( './8d_blocked.js' );
|
|
var blockedunary9d = require( './9d_blocked.js' );
|
|
var blockedunary10d = require( './10d_blocked.js' );
|
|
var accessorunary0d = require( './0d_accessors.js' );
|
|
var accessorunary1d = require( './1d_accessors.js' );
|
|
var accessorunary2d = require( './2d_accessors.js' );
|
|
var accessorunary3d = require( './3d_accessors.js' );
|
|
var accessorunary4d = require( './4d_accessors.js' );
|
|
var accessorunary5d = require( './5d_accessors.js' );
|
|
var accessorunary6d = require( './6d_accessors.js' );
|
|
var accessorunary7d = require( './7d_accessors.js' );
|
|
var accessorunary8d = require( './8d_accessors.js' );
|
|
var accessorunary9d = require( './9d_accessors.js' );
|
|
var accessorunary10d = require( './10d_accessors.js' );
|
|
var accessorunarynd = require( './nd_accessors.js' );
|
|
var unary0d = require( './0d.js' );
|
|
var unary1d = require( './1d.js' );
|
|
var unary2d = require( './2d.js' );
|
|
var unary3d = require( './3d.js' );
|
|
var unary4d = require( './4d.js' );
|
|
var unary5d = require( './5d.js' );
|
|
var unary6d = require( './6d.js' );
|
|
var unary7d = require( './7d.js' );
|
|
var unary8d = require( './8d.js' );
|
|
var unary9d = require( './9d.js' );
|
|
var unary10d = require( './10d.js' );
|
|
var unarynd = require( './nd.js' );
|
|
|
|
|
|
// VARIABLES //
|
|
|
|
var UNARY = [
|
|
unary0d,
|
|
unary1d,
|
|
unary2d,
|
|
unary3d,
|
|
unary4d,
|
|
unary5d,
|
|
unary6d,
|
|
unary7d,
|
|
unary8d,
|
|
unary9d,
|
|
unary10d
|
|
];
|
|
var ACCESSOR_UNARY = [
|
|
accessorunary0d,
|
|
accessorunary1d,
|
|
accessorunary2d,
|
|
accessorunary3d,
|
|
accessorunary4d,
|
|
accessorunary5d,
|
|
accessorunary6d,
|
|
accessorunary7d,
|
|
accessorunary8d,
|
|
accessorunary9d,
|
|
accessorunary10d
|
|
];
|
|
var BLOCKED_UNARY = [
|
|
blockedunary2d, // 0
|
|
blockedunary3d,
|
|
blockedunary4d,
|
|
blockedunary5d,
|
|
blockedunary6d,
|
|
blockedunary7d,
|
|
blockedunary8d,
|
|
blockedunary9d,
|
|
blockedunary10d // 8
|
|
];
|
|
var BLOCKED_ACCESSOR_UNARY = [
|
|
blockedaccessorunary2d, // 0
|
|
blockedaccessorunary3d,
|
|
blockedaccessorunary4d,
|
|
blockedaccessorunary5d,
|
|
blockedaccessorunary6d,
|
|
blockedaccessorunary7d,
|
|
blockedaccessorunary8d,
|
|
blockedaccessorunary9d,
|
|
blockedaccessorunary10d // 8
|
|
];
|
|
var MAX_DIMS = UNARY.length - 1;
|
|
|
|
|
|
// MAIN //
|
|
|
|
/**
|
|
* Applies a unary callback to elements in an input ndarray and assigns results to elements in an output ndarray.
|
|
*
|
|
* ## Notes
|
|
*
|
|
* - Each provided ndarray should be an `object` with the following properties:
|
|
*
|
|
* - **dtype**: data type.
|
|
* - **data**: data buffer.
|
|
* - **shape**: dimensions.
|
|
* - **strides**: stride lengths.
|
|
* - **offset**: index offset.
|
|
* - **order**: specifies whether an ndarray is row-major (C-style) or column major (Fortran-style).
|
|
*
|
|
* @param {ArrayLikeObject<Object>} arrays - array-like object containing one input array and one output array
|
|
* @param {Callback} fcn - unary callback
|
|
* @throws {Error} arrays must have the same number of dimensions
|
|
* @throws {Error} arrays must have the same shape
|
|
* @returns {void}
|
|
*
|
|
* @example
|
|
* var Float64Array = require( '@stdlib/array/float64' );
|
|
*
|
|
* function scale( x ) {
|
|
* return x * 10.0;
|
|
* }
|
|
*
|
|
* // Create data buffers:
|
|
* var xbuf = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 ] );
|
|
* var ybuf = new Float64Array( 6 );
|
|
*
|
|
* // Define the shape of the input and output arrays:
|
|
* var shape = [ 3, 1, 2 ];
|
|
*
|
|
* // Define the array strides:
|
|
* var sx = [ 4, 4, 1 ];
|
|
* var sy = [ 2, 2, 1 ];
|
|
*
|
|
* // Define the index offsets:
|
|
* var ox = 1;
|
|
* var oy = 0;
|
|
*
|
|
* // Create the input and output ndarray-like objects:
|
|
* var x = {
|
|
* 'dtype': 'float64',
|
|
* 'data': xbuf,
|
|
* 'shape': shape,
|
|
* 'strides': sx,
|
|
* 'offset': ox,
|
|
* 'order': 'row-major'
|
|
* };
|
|
* var y = {
|
|
* 'dtype': 'float64',
|
|
* 'data': ybuf,
|
|
* 'shape': shape,
|
|
* 'strides': sy,
|
|
* 'offset': oy,
|
|
* 'order': 'row-major'
|
|
* };
|
|
*
|
|
* // Apply the unary function:
|
|
* unary( [ x, y ], scale );
|
|
*
|
|
* console.log( y.data );
|
|
* // => <Float64Array>[ 20.0, 30.0, 60.0, 70.0, 100.0, 110.0 ]
|
|
*/
|
|
function unary( arrays, fcn ) {
|
|
var ndims;
|
|
var xmmv;
|
|
var ymmv;
|
|
var shx;
|
|
var shy;
|
|
var iox;
|
|
var ioy;
|
|
var len;
|
|
var sx;
|
|
var sy;
|
|
var ox;
|
|
var oy;
|
|
var ns;
|
|
var x;
|
|
var y;
|
|
var d;
|
|
var i;
|
|
|
|
// Unpack the ndarrays and standardize ndarray meta data:
|
|
x = copy( arrays[ 0 ] );
|
|
y = copy( arrays[ 1 ] );
|
|
|
|
// Verify that the input and output arrays have the same number of dimensions...
|
|
shx = x.shape;
|
|
shy = y.shape;
|
|
ndims = shx.length;
|
|
if ( ndims !== shy.length ) {
|
|
throw new Error( 'invalid arguments. Arrays must have the same number of dimensions (i.e., same rank). ndims(x) == '+ndims+'. ndims(y) == '+shy.length+'.' );
|
|
}
|
|
// Determine whether we can avoid iteration altogether...
|
|
if ( ndims === 0 ) {
|
|
if ( x.accessors || y.accessors ) {
|
|
return ACCESSOR_UNARY[ ndims ]( x, y, fcn );
|
|
}
|
|
return UNARY[ ndims ]( x, y, fcn );
|
|
}
|
|
// Verify that the input and output arrays have the same dimensions...
|
|
len = 1; // number of elements
|
|
ns = 0; // number of singleton dimensions
|
|
for ( i = 0; i < ndims; i++ ) {
|
|
d = shx[ i ];
|
|
if ( d !== shy[ i ] ) {
|
|
throw new Error( 'invalid arguments. Arrays must have the same shape.' );
|
|
}
|
|
// Note that, if one of the dimensions is `0`, the length will be `0`...
|
|
len *= d;
|
|
|
|
// Check whether the current dimension is a singleton dimension...
|
|
if ( d === 1 ) {
|
|
ns += 1;
|
|
}
|
|
}
|
|
// Check whether we were provided empty ndarrays...
|
|
if ( len === 0 ) {
|
|
return;
|
|
}
|
|
// Determine whether the ndarrays are one-dimensional and thus readily translate to one-dimensional strided arrays...
|
|
if ( ndims === 1 ) {
|
|
if ( x.accessors || y.accessors ) {
|
|
return ACCESSOR_UNARY[ ndims ]( x, y, fcn );
|
|
}
|
|
return UNARY[ ndims ]( x, y, fcn );
|
|
}
|
|
sx = x.strides;
|
|
sy = y.strides;
|
|
|
|
// Determine whether the ndarray has only **one** non-singleton dimension (e.g., ndims=4, shape=[10,1,1,1]) so that we can treat the ndarrays as being equivalent to one-dimensional strided arrays...
|
|
if ( ns === ndims-1 ) {
|
|
// Get the index of the non-singleton dimension...
|
|
for ( i = 0; i < ndims; i++ ) {
|
|
if ( shx[ i ] !== 1 ) {
|
|
break;
|
|
}
|
|
}
|
|
x.shape = [ shx[i] ];
|
|
y.shape = x.shape;
|
|
x.strides = [ sx[i] ];
|
|
y.strides = [ sy[i] ];
|
|
if ( x.accessors || y.accessors ) {
|
|
return ACCESSOR_UNARY[ 1 ]( x, y, fcn );
|
|
}
|
|
return UNARY[ 1 ]( x, y, fcn );
|
|
}
|
|
iox = iterationOrder( sx ); // +/-1
|
|
ioy = iterationOrder( sy ); // +/-1
|
|
|
|
// Determine whether we can avoid blocked iteration...
|
|
if ( iox !== 0 && ioy !== 0 && x.order === y.order ) {
|
|
// Determine the minimum and maximum linear indices which are accessible by the array views:
|
|
xmmv = minmaxViewBufferIndex( shx, sx, x.offset );
|
|
ymmv = minmaxViewBufferIndex( shy, sy, y.offset );
|
|
|
|
// Determine whether we can ignore shape (and strides) and treat the ndarrays as linear one-dimensional strided arrays...
|
|
if ( len === ( xmmv[1]-xmmv[0]+1 ) && len === ( ymmv[1]-ymmv[0]+1 ) ) {
|
|
// Note: the above is equivalent to @stdlib/ndarray/base/assert/is-contiguous, but in-lined so we can retain computed values...
|
|
if ( iox === 1 ) {
|
|
ox = xmmv[ 0 ];
|
|
} else {
|
|
ox = xmmv[ 1 ];
|
|
}
|
|
if ( ioy === 1 ) {
|
|
oy = ymmv[ 0 ];
|
|
} else {
|
|
oy = ymmv[ 1 ];
|
|
}
|
|
x.shape = [ len ];
|
|
y.shape = x.shape;
|
|
x.strides = [ iox ];
|
|
y.strides = [ ioy ];
|
|
x.offset = ox;
|
|
y.offset = oy;
|
|
if ( x.accessors || y.accessors ) {
|
|
return ACCESSOR_UNARY[ 1 ]( x, y, fcn );
|
|
}
|
|
return UNARY[ 1 ]( x, y, fcn );
|
|
}
|
|
// At least one ndarray is non-contiguous, so we cannot directly use one-dimensional array functionality...
|
|
|
|
// Determine whether we can use simple nested loops...
|
|
if ( ndims <= MAX_DIMS ) {
|
|
// So long as iteration for each respective array always moves in the same direction (i.e., no mixed sign strides), we can leverage cache-optimal (i.e., normal) nested loops without resorting to blocked iteration...
|
|
if ( x.accessors || y.accessors ) {
|
|
return ACCESSOR_UNARY[ ndims ]( x, y, fcn );
|
|
}
|
|
return UNARY[ ndims ]( x, y, fcn );
|
|
}
|
|
// Fall-through to blocked iteration...
|
|
}
|
|
// At this point, we're either dealing with non-contiguous n-dimensional arrays, high dimensional n-dimensional arrays, and/or arrays having differing memory layouts, so our only hope is that we can still perform blocked iteration...
|
|
|
|
// Determine whether we can perform blocked iteration...
|
|
if ( ndims <= MAX_DIMS ) {
|
|
if ( x.accessors || y.accessors ) {
|
|
return BLOCKED_ACCESSOR_UNARY[ ndims-2 ]( x, y, fcn );
|
|
}
|
|
return BLOCKED_UNARY[ ndims-2 ]( x, y, fcn );
|
|
}
|
|
// Fall-through to linear view iteration without regard for how data is stored in memory (i.e., take the slow path)...
|
|
if ( x.accessors || y.accessors ) {
|
|
return accessorunarynd( x, y, fcn );
|
|
}
|
|
unarynd( x, y, fcn );
|
|
}
|
|
|
|
|
|
// EXPORTS //
|
|
|
|
module.exports = unary;
|