time-to-botec/js/node_modules/@stdlib/math/base/special/beta
NunoSempere b6addc7f05 feat: add the node modules
Necessary in order to clearly see the squiggle hotwiring.
2022-12-03 12:44:49 +00:00
..
docs feat: add the node modules 2022-12-03 12:44:49 +00:00
lib feat: add the node modules 2022-12-03 12:44:49 +00:00
scripts feat: add the node modules 2022-12-03 12:44:49 +00:00
package.json feat: add the node modules 2022-12-03 12:44:49 +00:00
README.md feat: add the node modules 2022-12-03 12:44:49 +00:00

beta

Beta function.

The beta function, also called the Euler integral, is defined as

Equation for the beta function.

The beta function is related to the Gamma function via the following equation

Beta function expressed in terms of the Gamma function.

Usage

var beta = require( '@stdlib/math/base/special/beta' );

beta( x, y )

Evaluates the beta function.

var val = beta( 0.0, 0.5 );
// returns Infinity

val = beta( 1.0, 1.0 );
// returns 1.0

val = beta( -1.0, 2.0 );
// returns NaN

val = beta( 5.0, 0.2 );
// returns ~3.382

val = beta( 4.0, 1.0 );
// returns 0.25

Examples

var beta = require( '@stdlib/math/base/special/beta' );
var x;
var y;

for ( x = 0; x < 10; x++ ) {
    for ( y = 10; y > 0; y-- ) {
        console.log( 'x: %d, \t y: %d, \t f(x,y): %d', x, y, beta( x, y ) );
    }
}