|
||
---|---|---|
.. | ||
docs | ||
lib | ||
package.json | ||
README.md |
Student's t-Test
One-sample and paired Student's t-Test.
Usage
var ttest = require( '@stdlib/stats/ttest' );
ttest( x[, y][, opts] )
The function performs a one-sample t-test for the null hypothesis that the data in array or typed array x
is drawn from a normal distribution with mean zero and unknown variance.
var normal = require( '@stdlib/random/base/normal' ).factory;
var rnorm;
var arr;
var out;
var i;
rnorm = normal( 0.0, 2.0, {
'seed': 5776
});
arr = new Array( 100 );
for ( i = 0; i < arr.length; i++ ) {
arr[ i ] = rnorm();
}
out = ttest( arr );
/* e.g., returns
{
'rejected': false,
'pValue': ~0.722,
'statistic': ~0.357,
'ci': [~-0.333,~0.479],
// ...
}
*/
When array or typed array y
is supplied, the function tests whether the differences x - y
come from a normal distribution with mean zero and unknown variance via the paired t-test.
var normal = require( '@stdlib/random/base/normal' ).factory;
var rnorm;
var out;
var i;
var x;
var y;
rnorm = normal( 1.0, 2.0, {
'seed': 786
});
x = new Array( 100 );
y = new Array( 100 );
for ( i = 0; i < x.length; i++ ) {
x[ i ] = rnorm();
y[ i ] = rnorm();
}
out = ttest( x, y );
/* e.g., returns
{
'rejected': false,
'pValue': ~0.191,
'statistic': ~1.315,
'ci': [ ~-0.196, ~0.964 ],
// ...
}
*/
The returned object comes with a .print()
method which when invoked will print a formatted output of the hypothesis test results. print
accepts a digits
option that controls the number of decimal digits displayed for the outputs and a decision
option, which when set to false
will hide the test decision.
console.log( out.print() );
/* e.g., =>
Paired t-test
Alternative hypothesis: True difference in means is not equal to 0
pValue: 0.1916
statistic: 1.3148
df: 99
95% confidence interval: [-0.1955,0.9635]
Test Decision: Fail to reject null in favor of alternative at 5% significance level
*/
The ttest
function accepts the following options
:
- alpha:
number
in the interval[0,1]
giving the significance level of the hypothesis test. Default:0.05
. - alternative: Either
two-sided
,less
orgreater
. Indicates whether the alternative hypothesis is that the mean ofx
is larger thanmu
(greater
), smaller thanmu
(less
) or equal tomu
(two-sided
). Default:two-sided
. - mu:
number
denoting the hypothesized true mean under the null hypothesis. Default:0
.
By default, the hypothesis test is carried out at a significance level of 0.05
. To choose a different significance level, set the alpha
option.
var table;
var out;
var arr;
arr = [ 2, 4, 3, 1, 0 ];
out = ttest( arr, {
'alpha': 0.01
});
table = out.print();
/* e.g., returns
One-sample t-test
Alternative hypothesis: True mean is not equal to 0
pValue: 0.0474
statistic: 2.8284
df: 4
99% confidence interval: [-1.2556,5.2556]
Test Decision: Fail to reject null in favor of alternative at 1% significance level
*/
out = ttest( arr, {
'alpha': 0.1
});
table = out.print();
/* e.g., returns
One-sample t-test
Alternative hypothesis: True mean is not equal to 0
pValue: 0.0474
statistic: 2.8284
df: 4
90% confidence interval: [0.4926,3.5074]
Test Decision: Reject null in favor of alternative at 10% significance level
*/
To test whether the data comes from a distribution with a mean different than zero, set the mu
option.
var out;
var arr;
arr = [ 4, 4, 6, 6, 5 ];
out = ttest( arr, {
'mu': 5
});
/* e.g., returns
{
'rejected': false,
'pValue': 1,
'statistic': 0,
'ci': [ ~3.758, ~6.242 ],
// ...
}
*/
By default, a two-sided test is performed. To perform either of the one-sided tests, set the alternative
option to less
or greater
.
var table;
var out;
var arr;
arr = [ 4, 4, 6, 6, 5 ];
out = ttest( arr, {
'alternative': 'less'
});
table = out.print();
/* e.g., returns
One-sample t-test
Alternative hypothesis: True mean is less than 0
pValue: 0.9998
statistic: 11.1803
df: 4
95% confidence interval: [-Infinity,5.9534]
Test Decision: Fail to reject null in favor of alternative at 5% significance level
*/
out = ttest( arr, {
'alternative': 'greater'
});
table = out.print();
/* e.g., returns
One-sample t-test
Alternative hypothesis: True mean is greater than 0
pValue: 0.0002
statistic: 11.1803
df: 4
95% confidence interval: [4.0466,Infinity]
Test Decision: Reject null in favor of alternative at 5% significance level
*/
Examples
var normal = require( '@stdlib/random/base/normal' ).factory;
var ttest = require( '@stdlib/stats/ttest' );
var rnorm;
var arr;
var out;
var i;
rnorm = normal( 5.0, 4.0, {
'seed': 37827
});
arr = new Array( 100 );
for ( i = 0; i < arr.length; i++ ) {
arr[ i ] = rnorm();
}
// Test whether true mean is equal to zero:
out = ttest( arr );
console.log( out.print() );
/* e.g., =>
One-sample t-test
Alternative hypothesis: True mean is not equal to 0
pValue: 0
statistic: 15.0513
df: 99
95% confidence interval: [4.6997,6.127]
Test Decision: Reject null in favor of alternative at 5% significance level
*/
// Test whether true mean is equal to five:
out = ttest( arr, {
'mu': 5.0
});
console.log( out.print() );
/* e.g., =>
One-sample t-test
Alternative hypothesis: True mean is not equal to 5
pValue: 0.2532
statistic: 1.1494
df: 99
95% confidence interval: [4.6997,6.127]
Test Decision: Fail to reject null in favor of alternative at 5% significance level
*/