time-to-botec/squiggle/node_modules/@stdlib/stats/base/dsvariance
NunoSempere b6addc7f05 feat: add the node modules
Necessary in order to clearly see the squiggle hotwiring.
2022-12-03 12:44:49 +00:00
..
docs feat: add the node modules 2022-12-03 12:44:49 +00:00
include/stdlib/stats/base feat: add the node modules 2022-12-03 12:44:49 +00:00
lib feat: add the node modules 2022-12-03 12:44:49 +00:00
src feat: add the node modules 2022-12-03 12:44:49 +00:00
binding.gyp feat: add the node modules 2022-12-03 12:44:49 +00:00
include.gypi feat: add the node modules 2022-12-03 12:44:49 +00:00
manifest.json feat: add the node modules 2022-12-03 12:44:49 +00:00
package.json feat: add the node modules 2022-12-03 12:44:49 +00:00
README.md feat: add the node modules 2022-12-03 12:44:49 +00:00

dsvariance

Calculate the variance of a single-precision floating-point strided array using extended accumulation and returning an extended precision result.

The population variance of a finite size population of size N is given by

Equation for the population variance.

where the population mean is given by

Equation for the population mean.

Often in the analysis of data, the true population variance is not known a priori and must be estimated from a sample drawn from the population distribution. If one attempts to use the formula for the population variance, the result is biased and yields a biased sample variance. To compute an unbiased sample variance for a sample of size n,

Equation for computing an unbiased sample variance.

where the sample mean is given by

Equation for the sample mean.

The use of the term n-1 is commonly referred to as Bessel's correction. Note, however, that applying Bessel's correction can increase the mean squared error between the sample variance and population variance. Depending on the characteristics of the population distribution, other correction factors (e.g., n-1.5, n+1, etc) can yield better estimators.

Usage

var dsvariance = require( '@stdlib/stats/base/dsvariance' );

dsvariance( N, correction, x, stride )

Computes the variance of a single-precision floating-point strided array x using extended accumulation and returning an extended precision result.

var Float32Array = require( '@stdlib/array/float32' );

var x = new Float32Array( [ 1.0, -2.0, 2.0 ] );
var N = x.length;

var v = dsvariance( N, 1, x, 1 );
// returns ~4.3333

The function has the following parameters:

  • N: number of indexed elements.
  • correction: degrees of freedom adjustment. Setting this parameter to a value other than 0 has the effect of adjusting the divisor during the calculation of the variance according to N-c where c corresponds to the provided degrees of freedom adjustment. When computing the variance of a population, setting this parameter to 0 is the standard choice (i.e., the provided array contains data constituting an entire population). When computing the unbiased sample variance, setting this parameter to 1 is the standard choice (i.e., the provided array contains data sampled from a larger population; this is commonly referred to as Bessel's correction).
  • x: input Float32Array.
  • stride: index increment for x.

The N and stride parameters determine which elements in x are accessed at runtime. For example, to compute the variance of every other element in x,

var Float32Array = require( '@stdlib/array/float32' );
var floor = require( '@stdlib/math/base/special/floor' );

var x = new Float32Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ] );
var N = floor( x.length / 2 );

var v = dsvariance( N, 1, x, 2 );
// returns 6.25

Note that indexing is relative to the first index. To introduce an offset, use typed array views.

var Float32Array = require( '@stdlib/array/float32' );
var floor = require( '@stdlib/math/base/special/floor' );

var x0 = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var x1 = new Float32Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element

var N = floor( x0.length / 2 );

var v = dsvariance( N, 1, x1, 2 );
// returns 6.25

dsvariance.ndarray( N, correction, x, stride, offset )

Computes the variance of a single-precision floating-point strided array using extended accumulation and alternative indexing semantics and returning an extended precision result.

var Float32Array = require( '@stdlib/array/float32' );

var x = new Float32Array( [ 1.0, -2.0, 2.0 ] );
var N = x.length;

var v = dsvariance.ndarray( N, 1, x, 1, 0 );
// returns ~4.33333

The function has the following additional parameters:

  • offset: starting index for x.

While typed array views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to calculate the variance for every other value in x starting from the second value

var Float32Array = require( '@stdlib/array/float32' );
var floor = require( '@stdlib/math/base/special/floor' );

var x = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var N = floor( x.length / 2 );

var v = dsvariance.ndarray( N, 1, x, 2, 1 );
// returns 6.25

Notes

  • If N <= 0, both functions return NaN.
  • If N - c is less than or equal to 0 (where c corresponds to the provided degrees of freedom adjustment), both functions return NaN.
  • Accumulated intermediate values are stored as double-precision floating-point numbers.

Examples

var randu = require( '@stdlib/random/base/randu' );
var round = require( '@stdlib/math/base/special/round' );
var Float32Array = require( '@stdlib/array/float32' );
var dsvariance = require( '@stdlib/stats/base/dsvariance' );

var x;
var i;

x = new Float32Array( 10 );
for ( i = 0; i < x.length; i++ ) {
    x[ i ] = round( (randu()*100.0) - 50.0 );
}
console.log( x );

var v = dsvariance( x.length, 1, x, 1 );
console.log( v );