time-to-botec/squiggle/node_modules/@stdlib/stats/base/dmeanlipw/lib/dmeanlipw.js
NunoSempere b6addc7f05 feat: add the node modules
Necessary in order to clearly see the squiggle hotwiring.
2022-12-03 12:44:49 +00:00

70 lines
1.8 KiB
JavaScript
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/**
* @license Apache-2.0
*
* Copyright (c) 2020 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
'use strict';
// MODULES //
var dapxsumpw = require( '@stdlib/blas/ext/base/dapxsumpw' ).ndarray;
// MAIN //
/**
* Computes the arithmetic mean of a double-precision floating-point strided array using a one-pass trial mean algorithm with pairwise summation.
*
* ## References
*
* - Ling, Robert F. 1974. "Comparison of Several Algorithms for Computing Sample Means and Variances." _Journal of the American Statistical Association_ 69 (348). American Statistical Association, Taylor & Francis, Ltd.: 85966. doi:[10.2307/2286154](https://doi.org/10.2307/2286154).
*
* @param {PositiveInteger} N - number of indexed elements
* @param {Float64Array} x - input array
* @param {integer} stride - stride length
* @returns {number} arithmetic mean
*
* @example
* var Float64Array = require( '@stdlib/array/float64' );
*
* var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );
* var N = x.length;
*
* var v = dmeanlipw( N, x, 1 );
* // returns ~0.3333
*/
function dmeanlipw( N, x, stride ) {
var ix;
if ( N <= 0 ) {
return NaN;
}
if ( N === 1 || stride === 0 ) {
return x[ 0 ];
}
if ( stride < 0 ) {
ix = (1-N) * stride;
} else {
ix = 0;
}
return x[ ix ] + ( dapxsumpw( N-1, -x[ ix ], x, stride, ix+stride ) / N );
}
// EXPORTS //
module.exports = dmeanlipw;