|
||
---|---|---|
.. | ||
docs | ||
lib | ||
package.json | ||
README.md |
Logarithm of Cumulative Distribution Function
Evaluate the natural logarithm of the cumulative distribution function (CDF) for a Student's t distribution.
The cumulative distribution function (CDF) for a t distribution random variable is
where v > 0
is the degrees of freedom. In the definition, Beta( x; a, b )
denotes the lower incomplete beta function and Beta( a, b )
the beta function.
Usage
var logcdf = require( '@stdlib/stats/base/dists/t/logcdf' );
logcdf( x, v )
Evaluates the natural logarithm of the cumulative distribution function (CDF) for a Student's t distribution with degrees of freedom v
.
var y = logcdf( 2.0, 0.1 );
// returns ~-0.493
y = logcdf( 1.0, 2.0 );
// returns ~-0.237
y = logcdf( -1.0, 4.0 );
// returns ~-1.677
If provided NaN
as any argument, the function returns NaN
.
var y = logcdf( NaN, 1.0 );
// returns NaN
y = logcdf( 0.0, NaN );
// returns NaN
If provided v <= 0
, the function returns NaN
.
var y = logcdf( 2.0, -1.0 );
// returns NaN
y = logcdf( 2.0, 0.0 );
// returns NaN
logcdf.factory( v )
Returns a function
for evaluating the natural logarithm of the CDF of a Student's t distribution with degrees of freedom v
.
var mylogcdf = logcdf.factory( 0.5 );
var y = mylogcdf( 3.0 );
// returns ~-0.203
y = mylogcdf( 1.0 );
// returns ~-0.358
Notes
- In virtually all cases, using the
logpdf
orlogcdf
functions is preferable to manually computing the logarithm of thepdf
orcdf
, respectively, since the latter is prone to overflow and underflow.
Examples
var randu = require( '@stdlib/random/base/randu' );
var logcdf = require( '@stdlib/stats/base/dists/t/logcdf' );
var v;
var x;
var y;
var i;
for ( i = 0; i < 10; i++ ) {
x = (randu() * 6.0) - 3.0;
v = randu() * 10.0;
y = logcdf( x, v );
console.log( 'x: %d, v: %d, ln(F(x;v)): %d', x.toFixed( 4 ), v.toFixed( 4 ), y.toFixed( 4 ) );
}