|
||
---|---|---|
.. | ||
docs | ||
lib | ||
package.json | ||
README.md |
Cumulative Distribution Function
Poisson distribution cumulative distribution function.
The cumulative distribution function for a Poisson random variable is
where lambda
is the mean parameter. Internally, the module evaluates the CDF by evaluating the upper regularized gamma function at input values lambda
and floor( x ) + 1
.
Usage
var cdf = require( '@stdlib/stats/base/dists/poisson/cdf' );
cdf( x, lambda )
Evaluates the cumulative distribution function for a Poisson distribution with mean parameter lambda
.
var y = cdf( 2.0, 0.5 );
// returns ~0.986
y = cdf( 2.0, 10.0 );
// returns ~0.003
y = cdf( -1.0, 4.0 );
// returns 0.0
If provided NaN
as any argument, the function returns NaN
.
var y = cdf( NaN, 1.0 );
// returns NaN
y = cdf( 0.0, NaN );
// returns NaN
If provided lambda < 0
, the function returns NaN
.
var y = cdf( 2.0, -1.0 );
// returns NaN
If provided lambda = 0
, the function evaluates the CDF of a degenerate distribution centered at 0
.
var y = cdf( -2.0, 0.0 );
// returns 0.0
y = cdf( 0.0, 0.0 );
// returns 1.0
y = cdf( 10.0, 0.0 );
// returns 1.0
cdf.factory( lambda )
Returns a function for evaluating the cumulative distribution function of a Poisson distribution with mean parameter lambda
.
var mycdf = cdf.factory( 5.0 );
var y = mycdf( 3.0 );
// returns ~0.265
y = mycdf( 8.0 );
// returns ~0.932
Examples
var randu = require( '@stdlib/random/base/randu' );
var cdf = require( '@stdlib/stats/base/dists/poisson/cdf' );
var lambda;
var x;
var y;
var i;
for ( i = 0; i < 10; i++ ) {
x = randu() * 10.0;
lambda = randu() * 10.0;
y = cdf( x, lambda );
console.log( 'x: %d, λ: %d, F(x;λ): %d', x.toFixed( 4 ), lambda.toFixed( 4 ), y.toFixed( 4 ) );
}