|
||
---|---|---|
.. | ||
docs | ||
lib | ||
package.json | ||
README.md |
Logarithm of Probability Density Function
Laplace distribution logarithm of probability density function (PDF).
The probability density function (PDF) for a Laplace random variable is
where mu
is the location parameter and b > 0
is the scale parameter (also called diversity).
Usage
var logpdf = require( '@stdlib/stats/base/dists/laplace/logpdf' );
logpdf( x, mu, b )
Evaluates the logarithm of the probability density function (PDF) for a Laplace distribution with parameters mu
(location parameter) and b > 0
(scale parameter).
var y = logpdf( 2.0, 0.0, 1.0 );
// returns ~-2.693
y = logpdf( -1.0, 2.0, 3.0 );
// returns ~-2.792
y = logpdf( 2.5, 2.0, 3.0 );
// returns ~-1.958
If provided NaN
as any argument, the function returns NaN
.
var y = logpdf( NaN, 0.0, 1.0 );
// returns NaN
y = logpdf( 0.0, NaN, 1.0 );
// returns NaN
y = logpdf( 0.0, 0.0, NaN );
// returns NaN
If provided b <= 0
, the function returns NaN
.
var y = logpdf( 2.0, 0.0, -1.0 );
// returns NaN
y = logpdf( 2.0, 8.0, 0.0 );
// returns NaN
logpdf.factory( mu, b )
Return a function
for evaluating the logarithm of the PDF for a Laplace distribution with parameters mu
(location parameter) and b > 0
(scale parameter).
var mylogpdf = logpdf.factory( 10.0, 2.0 );
var y = mylogpdf( 10.0 );
// returns ~-1.386
y = mylogpdf( 5.0 );
// returns ~-3.886
y = mylogpdf( 12.0 );
// returns ~-2.386
Notes
- In virtually all cases, using the
logpdf
orlogcdf
functions is preferable to manually computing the logarithm of thepdf
orcdf
, respectively, since the latter is prone to overflow and underflow.
Examples
var randu = require( '@stdlib/random/base/randu' );
var logpdf = require( '@stdlib/stats/base/dists/laplace/logpdf' );
var mu;
var b;
var x;
var y;
var i;
for ( i = 0; i < 100; i++ ) {
x = randu() * 10.0;
mu = randu() * 10.0;
b = randu() * 10.0;
y = logpdf( x, mu, b );
console.log( 'x: %d, µ: %d, b: %d, ln(f(x;µ,b)): %d', x.toFixed( 4 ), mu.toFixed( 4 ), b.toFixed( 4 ), y.toFixed( 4 ) );
}