time-to-botec/squiggle/node_modules/@stdlib/stats/base/dists/kumaraswamy/logpdf
NunoSempere b6addc7f05 feat: add the node modules
Necessary in order to clearly see the squiggle hotwiring.
2022-12-03 12:44:49 +00:00
..
docs feat: add the node modules 2022-12-03 12:44:49 +00:00
lib feat: add the node modules 2022-12-03 12:44:49 +00:00
package.json feat: add the node modules 2022-12-03 12:44:49 +00:00
README.md feat: add the node modules 2022-12-03 12:44:49 +00:00

Logarithm of Probability Density Function

Evaluate the natural logarithm of the probability density function for a Kumaraswamy's double bounded distribution.

The probability density function (PDF) for a Kumaraswamy's double bounded random variable is

Probability density function (PDF) for a Kumaraswamy's double bounded distribution.

where a > 0 is the first shape parameter and b > 0 is the second shape parameter.

Usage

var logpdf = require( '@stdlib/stats/base/dists/kumaraswamy/logpdf' );

logpdf( x, a, b )

Evaluates the natural logarithm of the probability density function (PDF) for a Kumaraswamy's double bounded distribution with parameters a (first shape parameter) and b (second shape parameter).

var y = logpdf( 0.5, 1.0, 1.0 );
// returns 0.0

y = logpdf( 0.5, 2.0, 4.0 );
// returns ~0.523

y = logpdf( 0.2, 2.0, 2.0 );
// returns ~-0.264

y = logpdf( 0.8, 4.0, 4.0 );
// returns ~0.522

y = logpdf( -0.5, 4.0, 2.0 );
// returns -Infinity

y = logpdf( -Infinity, 4.0, 2.0 );
// returns -Infinity

y = logpdf( 1.5, 4.0, 2.0 );
// returns -Infinity

y = logpdf( +Infinity, 4.0, 2.0 );
// returns -Infinity

If provided NaN as any argument, the function returns NaN.

var y = logpdf( NaN, 1.0, 1.0 );
// returns NaN

y = logpdf( 0.0, NaN, 1.0 );
// returns NaN

y = logpdf( 0.0, 1.0, NaN );
// returns NaN

If provided a <= 0, the function returns NaN.

var y = logpdf( 2.0, -1.0, 0.5 );
// returns NaN

y = logpdf( 2.0, 0.0, 0.5 );
// returns NaN

If provided b <= 0, the function returns NaN.

var y = logpdf( 2.0, 0.5, -1.0 );
// returns NaN

y = logpdf( 2.0, 0.5, 0.0 );
// returns NaN

logpdf.factory( a, b )

Returns a function for evaluating the natural logarithm of the probability density function (PDF) for a Kumaraswamy's double bounded distribution with parameters a (first shape parameter) and b (second shape parameter).

var mylogpdf = logpdf.factory( 0.5, 0.5 );

var y = mylogpdf( 0.8 );
// returns ~-0.151

y = mylogpdf( 0.3 );
// returns ~-0.388

Notes

  • In virtually all cases, using the logpdf or logcdf functions is preferable to manually computing the logarithm of the pdf or cdf, respectively, since the latter is prone to overflow and underflow.

Examples

var randu = require( '@stdlib/random/base/randu' );
var EPS = require( '@stdlib/constants/float64/eps' );
var logpdf = require( '@stdlib/stats/base/dists/kumaraswamy/logpdf' );

var a;
var b;
var x;
var y;
var i;

for ( i = 0; i < 10; i++ ) {
    x = randu();
    a = ( randu()*5.0 ) + EPS;
    b = ( randu()*5.0 ) + EPS;
    y = logpdf( x, a, b );
    console.log( 'x: %d, a: %d, b: %d, ln(f(x;a,b)): %d', x.toFixed( 4 ), a.toFixed( 4 ), b.toFixed( 4 ), y.toFixed( 4 ) );
}