|
||
---|---|---|
.. | ||
docs | ||
lib | ||
package.json | ||
README.md |
Logarithm of Cumulative Distribution Function
Evaluate the natural logarithm of the cumulative distribution function for a Kumaraswamy's double bounded distribution.
The cumulative distribution function for a Kumaraswamy's double bounded random variable is
where a > 0
is the first shape parameter and b > 0
is the second shape parameter.
Usage
var logcdf = require( '@stdlib/stats/base/dists/kumaraswamy/logcdf' );
logcdf( x, a, b )
Evaluates the natural logarithm of the cumulative distribution function (CDF) for a Kumaraswamy's double bounded distribution with parameters a
(first shape parameter) and b
(second shape parameter).
var y = logcdf( 0.5, 1.0, 1.0 );
// returns ~-0.693
y = logcdf( 0.5, 2.0, 4.0 );
// returns ~-0.38
y = logcdf( 0.2, 2.0, 2.0 );
// returns ~-2.546
y = logcdf( 0.8, 4.0, 4.0 );
// returns ~-0.13
y = logcdf( -0.5, 4.0, 2.0 );
// returns -Infinity
y = logcdf( -Infinity, 4.0, 2.0 );
// returns -Infinity
y = logcdf( 1.5, 4.0, 2.0 );
// returns 0.0
y = logcdf( +Infinity, 4.0, 2.0 );
// returns 0.0
If provided NaN
as any argument, the function returns NaN
.
var y = logcdf( NaN, 1.0, 1.0 );
// returns NaN
y = logcdf( 0.0, NaN, 1.0 );
// returns NaN
y = logcdf( 0.0, 1.0, NaN );
// returns NaN
If provided a <= 0
, the function returns NaN
.
var y = logcdf( 2.0, -1.0, 0.5 );
// returns NaN
y = logcdf( 2.0, 0.0, 0.5 );
// returns NaN
If provided b <= 0
, the function returns NaN
.
var y = logcdf( 2.0, 0.5, -1.0 );
// returns NaN
y = logcdf( 2.0, 0.5, 0.0 );
// returns NaN
logcdf.factory( a, b )
Returns a function for evaluating the natural logarithm of the cumulative distribution function for a Kumaraswamy's double bounded distribution with parameters a
(first shape parameter) and b
(second shape parameter).
var mylogcdf = logcdf.factory( 0.5, 0.5 );
var y = mylogcdf( 0.8 );
// returns ~-0.393
y = mylogcdf( 0.3 );
// returns ~-1.116
Notes
- In virtually all cases, using the
logpdf
orlogcdf
functions is preferable to manually computing the logarithm of thepdf
orcdf
, respectively, since the latter is prone to overflow and underflow.
Examples
var randu = require( '@stdlib/random/base/randu' );
var EPS = require( '@stdlib/constants/float64/eps' );
var logcdf = require( '@stdlib/stats/base/dists/kumaraswamy/logcdf' );
var a;
var b;
var x;
var y;
var i;
for ( i = 0; i < 10; i++ ) {
x = randu();
a = ( randu()*5.0 ) + EPS;
b = ( randu()*5.0 ) + EPS;
y = logcdf( x, a, b );
console.log( 'x: %d, a: %d, b: %d, ln(F(x;a,b)): %d', x.toFixed( 4 ), a.toFixed( 4 ), b.toFixed( 4 ), y.toFixed( 4 ) );
}