|
||
---|---|---|
.. | ||
docs | ||
lib | ||
package.json | ||
README.md |
Logarithm of Probability Density Function
Evaluate the natural logarithm of the probability density function (PDF) for an exponential distribution.
The probability density function (PDF) for an exponential random variable is
where λ
is the rate parameter.
Usage
var logpdf = require( '@stdlib/stats/base/dists/exponential/logpdf' );
logpdf( x, lambda )
Evaluates the natural logarithm of the probability density function (PDF) for an exponential distribution with rate parameter lambda
.
var y = logpdf( 2.0, 0.3 );
// returns ~-1.804
y = logpdf( 2.0, 1.0 );
// returns ~-2.0
If provided NaN
as any argument, the function returns NaN
.
var y = logpdf( NaN, 0.0 );
// returns NaN
y = logpdf( 0.0, NaN );
// returns NaN
If provided lambda < 0
, the function returns NaN
.
var y = logpdf( 2.0, -1.0 );
// returns NaN
logpdf.factory( lambda )
Returns a function for evaluating the natural logarithm of the probability density function (PDF) for an exponential distribution with rate parameter lambda
.
var mylogpdf = logpdf.factory( 0.1 );
var y = mylogpdf( 8.0 );
// returns ~-3.103
y = mylogpdf( 5.0 );
// returns ~-2.803
Notes
- In virtually all cases, using the
logpdf
orlogcdf
functions is preferable to manually computing the logarithm of thepdf
orcdf
, respectively, since the latter is prone to overflow and underflow.
Examples
var randu = require( '@stdlib/random/base/randu' );
var logpdf = require( '@stdlib/stats/base/dists/exponential/logpdf' );
var lambda;
var x;
var y;
var i;
for ( i = 0; i < 10; i++ ) {
x = randu() * 10.0;
lambda = randu() * 10.0;
y = logpdf( x, lambda );
console.log( 'x: %d, λ: %d, ln(f(x;λ)): %d', x, lambda, y );
}