|
||
---|---|---|
.. | ||
docs | ||
lib | ||
package.json | ||
README.md |
Logarithm of Cumulative Distribution Function
Evaluate the natural logarithm of the cumulative distribution function for an exponential distribution.
The cumulative distribution function for an exponential random variable is
where λ
is the rate parameter.
Usage
var logcdf = require( '@stdlib/stats/base/dists/exponential/logcdf' );
logcdf( x, lambda )
Evaluates the natural logarithm of the cumulative distribution function for an exponential distribution with rate parameter lambda
.
var y = logcdf( 2.0, 0.3 );
// returns ~-0.796
y = logcdf( 10.0, 0.3 );
// returns ~-0.051
If provided NaN
as any argument, the function returns NaN
.
var y = logcdf( NaN, 0.0 );
// returns NaN
y = logcdf( 0.0, NaN );
// returns NaN
If provided lambda < 0
, the function returns NaN
.
var y = logcdf( 2.0, -1.0 );
// returns NaN
logcdf.factory( lambda )
Returns a function for evaluating the natural logarithm of the cumulative distribution function (CDF) for an exponential distribution with rate parameter lambda
.
var mylogcdf = logcdf.factory( 0.1 );
var y = mylogcdf( 8.0 );
// returns ~-0.597
y = mylogcdf( 2.0 );
// returns ~-1.708
y = mylogcdf( 0.0 );
// returns -Infinity
Notes
- In virtually all cases, using the
logpdf
orlogcdf
functions is preferable to manually computing the logarithm of thepdf
orcdf
, respectively, since the latter is prone to overflow and underflow.
Examples
var randu = require( '@stdlib/random/base/randu' );
var logcdf = require( '@stdlib/stats/base/dists/exponential/logcdf' );
var lambda;
var x;
var y;
var i;
for ( i = 0; i < 10; i++ ) {
x = randu() * 10.0;
lambda = randu() * 10.0;
y = logcdf( x, lambda );
console.log( 'x: %d, λ: %d, ln(F(x;λ)): %d', x, lambda, y );
}