time-to-botec/squiggle/node_modules/@stdlib/stats/base/dists/exponential/logcdf
NunoSempere b6addc7f05 feat: add the node modules
Necessary in order to clearly see the squiggle hotwiring.
2022-12-03 12:44:49 +00:00
..
docs feat: add the node modules 2022-12-03 12:44:49 +00:00
lib feat: add the node modules 2022-12-03 12:44:49 +00:00
package.json feat: add the node modules 2022-12-03 12:44:49 +00:00
README.md feat: add the node modules 2022-12-03 12:44:49 +00:00

Logarithm of Cumulative Distribution Function

Evaluate the natural logarithm of the cumulative distribution function for an exponential distribution.

The cumulative distribution function for an exponential random variable is

Cumulative distribution function for an exponential distribution.

where λ is the rate parameter.

Usage

var logcdf = require( '@stdlib/stats/base/dists/exponential/logcdf' );

logcdf( x, lambda )

Evaluates the natural logarithm of the cumulative distribution function for an exponential distribution with rate parameter lambda.

var y = logcdf( 2.0, 0.3 );
// returns ~-0.796

y = logcdf( 10.0, 0.3 );
// returns ~-0.051

If provided NaN as any argument, the function returns NaN.

var y = logcdf( NaN, 0.0 );
// returns NaN

y = logcdf( 0.0, NaN );
// returns NaN

If provided lambda < 0, the function returns NaN.

var y = logcdf( 2.0, -1.0 );
// returns NaN

logcdf.factory( lambda )

Returns a function for evaluating the natural logarithm of the cumulative distribution function (CDF) for an exponential distribution with rate parameter lambda.

var mylogcdf = logcdf.factory( 0.1 );

var y = mylogcdf( 8.0 );
// returns ~-0.597

y = mylogcdf( 2.0 );
// returns ~-1.708

y = mylogcdf( 0.0 );
// returns -Infinity

Notes

  • In virtually all cases, using the logpdf or logcdf functions is preferable to manually computing the logarithm of the pdf or cdf, respectively, since the latter is prone to overflow and underflow.

Examples

var randu = require( '@stdlib/random/base/randu' );
var logcdf = require( '@stdlib/stats/base/dists/exponential/logcdf' );

var lambda;
var x;
var y;
var i;

for ( i = 0; i < 10; i++ ) {
    x = randu() * 10.0;
    lambda = randu() * 10.0;
    y = logcdf( x, lambda );
    console.log( 'x: %d, λ: %d, ln(F(x;λ)): %d', x, lambda, y );
}