|
||
---|---|---|
.. | ||
docs | ||
include/stdlib/blas/ext/base | ||
lib | ||
src | ||
binding.gyp | ||
include.gypi | ||
manifest.json | ||
package.json | ||
README.md |
dnannsumkbn
Calculate the sum of double-precision floating-point strided array elements, ignoring
NaN
values and using an improved Kahan–Babuška algorithm.
Usage
var dnannsumkbn = require( '@stdlib/blas/ext/base/dnannsumkbn' );
dnannsumkbn( N, x, strideX, out, strideOut )
Computes the sum of double-precision floating-point strided array elements, ignoring NaN
values and using an improved Kahan–Babuška algorithm.
var Float64Array = require( '@stdlib/array/float64' );
var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] );
var out = new Float64Array( 2 );
var v = dnannsumkbn( x.length, x, 1, out, 1 );
// returns <Float64Array>[ 1.0, 3 ]
The function has the following parameters:
- N: number of indexed elements.
- x: input
Float64Array
. - strideX: index increment for
x
. - out: output
Float64Array
whose first element is the sum and whose second element is the number of non-NaN elements. - strideOut: index increment for
out
.
The N
and stride
parameters determine which elements are accessed at runtime. For example, to compute the sum of every other element in x
,
var Float64Array = require( '@stdlib/array/float64' );
var floor = require( '@stdlib/math/base/special/floor' );
var x = new Float64Array( [ 1.0, 2.0, NaN, -7.0, NaN, 3.0, 4.0, 2.0 ] );
var out = new Float64Array( 2 );
var N = floor( x.length / 2 );
var v = dnannsumkbn( N, x, 2, out, 1 );
// returns <Float64Array>[ 5.0, 2 ]
Note that indexing is relative to the first index. To introduce an offset, use typed array
views.
var Float64Array = require( '@stdlib/array/float64' );
var floor = require( '@stdlib/math/base/special/floor' );
var x0 = new Float64Array( [ 2.0, 1.0, NaN, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var out0 = new Float64Array( 4 );
var out1 = new Float64Array( out0.buffer, out0.BYTES_PER_ELEMENT*2 ); // start at 3rd element
var N = floor( x0.length / 2 );
var v = dnannsumkbn( N, x1, 2, out1, 1 );
// returns <Float64Array>[ 5.0, 4 ]
dnannsumkbn.ndarray( N, x, strideX, offsetX, out, strideOut, offsetOut )
Computes the sum of double-precision floating-point strided array elements, ignoring NaN
values and using an improved Kahan–Babuška algorithm and alternative indexing semantics.
var Float64Array = require( '@stdlib/array/float64' );
var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] );
var out = new Float64Array( 2 );
var v = dnannsumkbn.ndarray( x.length, x, 1, 0, out, 1, 0 );
// returns <Float64Array>[ 1.0, 3 ]
The function has the following additional parameters:
- offsetX: starting index for
x
. - offsetOut: starting index for
out
.
While typed array
views mandate a view offset based on the underlying buffer
, the offset
parameter supports indexing semantics based on a starting index. For example, to calculate the sum of every other value in x
starting from the second value
var Float64Array = require( '@stdlib/array/float64' );
var floor = require( '@stdlib/math/base/special/floor' );
var x = new Float64Array( [ 2.0, 1.0, NaN, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var out = new Float64Array( 4 );
var N = floor( x.length / 2 );
var v = dnannsumkbn.ndarray( N, x, 2, 1, out, 2, 1 );
// returns <Float64Array>[ 0.0, 5.0, 0.0, 4 ]
Notes
- If
N <= 0
, both functions return a sum equal to0.0
.
Examples
var randu = require( '@stdlib/random/base/randu' );
var round = require( '@stdlib/math/base/special/round' );
var Float64Array = require( '@stdlib/array/float64' );
var dnannsumkbn = require( '@stdlib/blas/ext/base/dnannsumkbn' );
var x;
var i;
x = new Float64Array( 10 );
for ( i = 0; i < x.length; i++ ) {
if ( randu() < 0.2 ) {
x[ i ] = NaN;
} else {
x[ i ] = round( randu()*100.0 );
}
}
console.log( x );
var out = new Float64Array( 2 );
dnannsumkbn( x.length, x, 1, out, 1 );
console.log( out );
References
- Neumaier, Arnold. 1974. "Rounding Error Analysis of Some Methods for Summing Finite Sums." Zeitschrift Für Angewandte Mathematik Und Mechanik 54 (1): 39–51. doi:10.1002/zamm.19740540106.