time-to-botec/squiggle/node_modules/@stdlib/blas/base/dasum
NunoSempere b6addc7f05 feat: add the node modules
Necessary in order to clearly see the squiggle hotwiring.
2022-12-03 12:44:49 +00:00
..
docs feat: add the node modules 2022-12-03 12:44:49 +00:00
include/stdlib/blas/base feat: add the node modules 2022-12-03 12:44:49 +00:00
lib feat: add the node modules 2022-12-03 12:44:49 +00:00
src feat: add the node modules 2022-12-03 12:44:49 +00:00
binding.gyp feat: add the node modules 2022-12-03 12:44:49 +00:00
include.gypi feat: add the node modules 2022-12-03 12:44:49 +00:00
manifest.json feat: add the node modules 2022-12-03 12:44:49 +00:00
package.json feat: add the node modules 2022-12-03 12:44:49 +00:00
README.md feat: add the node modules 2022-12-03 12:44:49 +00:00

dasum

Compute the sum of absolute values (L1 norm).

The L1 norm is defined as

L1 norm definition.

Usage

var dasum = require( '@stdlib/blas/base/dasum' );

dasum( N, x, stride )

Computes the sum of absolute values.

var Float64Array = require( '@stdlib/array/float64' );

var x = new Float64Array( [ -2.0, 1.0, 3.0, -5.0, 4.0, 0.0, -1.0, -3.0 ] );

var sum = dasum( x.length, x, 1 );
// returns 19.0

The function has the following parameters:

  • N: number of elements to sum.
  • x: input Float64Array.
  • stride: index increment.

The N and stride parameters determine which elements in x are used to compute the sum. For example, to sum every other value,

var Float64Array = require( '@stdlib/array/float64' );
var floor = require( '@stdlib/math/base/special/floor' );

var x = new Float64Array( [ -2.0, 1.0, 3.0, -5.0, 4.0, 0.0, -1.0, -3.0 ] );

var N = floor( x.length / 2 );
var stride = 2;

var sum = dasum( N, x, stride );
// returns 10.0

Note that indexing is relative to the first index. To introduce an offset, use typed array views.

var Float64Array = require( '@stdlib/array/float64' );

// Initial array...
var x0 = new Float64Array( [ 1.0, -2.0, 3.0, -4.0, 5.0, -6.0 ] );

// Create an offset view...
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element

var N = 3;

// Sum every other value...
var sum = dasum( N, x1, 2 );
// returns 12.0

If either N or stride is less than or equal to 0, the function returns 0.

dasum.ndarray( N, x, stride, offset )

Computes the sum of absolute values using alternative indexing semantics.

var Float64Array = require( '@stdlib/array/float64' );

var x = new Float64Array( [ -2.0, 1.0, 3.0, -5.0, 4.0, 0.0, -1.0, -3.0 ] );

var sum = dasum.ndarray( x.length, x, 1, 0 );
// returns 19.0

The function has the following additional parameters:

  • offset: starting index.

While typed array views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to sum the last three elements,

var Float64Array = require( '@stdlib/array/float64' );

var x = new Float64Array( [ 1.0, -2.0, 3.0, -4.0, 5.0, -6.0 ] );

var sum = dasum.ndarray( 3, x, 1, x.length-3 );
// returns 15.0

// Using a negative stride to sum from the last element:
sum = dasum.ndarray( 3, x, -1, x.length-1 );
// returns 15.0

Notes

  • If N <= 0, the sum is 0.
  • dasum() corresponds to the BLAS level 1 function dasum.

Examples

var round = require( '@stdlib/math/base/special/round' );
var randu = require( '@stdlib/random/base/randu' );
var Float64Array = require( '@stdlib/array/float64' );
var dasum = require( '@stdlib/blas/base/dasum' );

var rand;
var sign;
var x;
var i;

x = new Float64Array( 100 );
for ( i = 0; i < x.length; i++ ) {
    rand = round( randu()*100.0 );
    sign = randu();
    if ( sign < 0.5 ) {
        sign = -1.0;
    } else {
        sign = 1.0;
    }
    x[ i ] = sign * rand;
}
console.log( dasum( x.length, x, 1 ) );