|  | ||
|---|---|---|
| .. | ||
| abs | ||
| abs2 | ||
| acos | ||
| acosh | ||
| acot | ||
| acoth | ||
| acovercos | ||
| acoversin | ||
| ahavercos | ||
| ahaversin | ||
| asin | ||
| asinh | ||
| atan | ||
| atan2 | ||
| atanh | ||
| avercos | ||
| aversin | ||
| besselj0 | ||
| besselj1 | ||
| bessely0 | ||
| bessely1 | ||
| beta | ||
| betaln | ||
| binet | ||
| cbrt | ||
| ceil | ||
| ceil2 | ||
| ceil10 | ||
| cos | ||
| cosh | ||
| cosm1 | ||
| cospi | ||
| covercos | ||
| coversin | ||
| deg2rad | ||
| digamma | ||
| dirac-delta | ||
| dirichlet-eta | ||
| docs/types | ||
| ellipe | ||
| ellipk | ||
| erf | ||
| erfc | ||
| erfcinv | ||
| erfinv | ||
| exp | ||
| exp2 | ||
| exp10 | ||
| expit | ||
| expm1 | ||
| expm1rel | ||
| factorial | ||
| factorialln | ||
| floor | ||
| floor2 | ||
| floor10 | ||
| fresnelc | ||
| fresnels | ||
| gamma | ||
| gamma1pm1 | ||
| gammaln | ||
| hacovercos | ||
| hacoversin | ||
| havercos | ||
| haversin | ||
| inv | ||
| lib | ||
| ln | ||
| log | ||
| log1mexp | ||
| log1p | ||
| log1pexp | ||
| log2 | ||
| log10 | ||
| logit | ||
| pow | ||
| rad2deg | ||
| ramp | ||
| riemann-zeta | ||
| round | ||
| round2 | ||
| round10 | ||
| rsqrt | ||
| signum | ||
| sin | ||
| sinc | ||
| sinh | ||
| sinpi | ||
| spence | ||
| sqrt | ||
| sqrt1pm1 | ||
| tan | ||
| tanh | ||
| trigamma | ||
| trunc | ||
| trunc2 | ||
| trunc10 | ||
| vercos | ||
| versin | ||
| package.json | ||
| README.md | ||
Special Functions
Standard library math iterators for special functions.
Usage
var ns = require( '@stdlib/math/iter/special' );
ns
Standard library math iterators for special functions.
var iterators = ns;
// returns {...}
The namespace contains the following functions for creating iterator protocol-compliant iterators:
- iterAbs( iterator ): create an iterator which iteratively computes the absolute value.
- iterAbs2( iterator ): create an iterator which iteratively computes the squared absolute value.
- iterAcos( iterator ): create an iterator which iteratively computes the arccosine.
- iterAcosh( iterator ): create an iterator which iteratively computes the hyperbolic arccosine.
- iterAcot( iterator ): create an iterator which iteratively computes the inverse cotangent.
- iterAcoth( iterator ): create an iterator which iteratively computes the inverse hyperbolic cotangent.
- iterAcovercos( iterator ): create an iterator which iteratively computes the inverse coversed cosine.
- iterAcoversin( iterator ): create an iterator which iteratively computes the inverse coversed sine.
- iterAhavercos( iterator ): create an iterator which iteratively computes the inverse half-value versed cosine.
- iterAhaversin( iterator ): create an iterator which iteratively computes the inverse half-value versed sine.
- iterAsin( iterator ): create an iterator which iteratively computes the arcsine.
- iterAsinh( iterator ): create an iterator which iteratively computes the hyperbolic arcsine.
- iterAtan( iterator ): create an iterator which iteratively computes the arctangent.
- iterAtan2( y, x ): create an iterator which iteratively computes the angle in the plane (in radians) between the positive x-axis and the ray from- (0,0)to the point- (x,y).
- iterAtanh( iterator ): create an iterator which iteratively computes the hyperbolic arctangent.
- iterAvercos( iterator ): create an iterator which iteratively computes the inverse versed cosine.
- iterAversin( iterator ): create an iterator which iteratively computes the inverse versed sine.
- iterBesselj0( iterator ): create an iterator which iteratively evaluates the Bessel function of the first kind of order zero.
- iterBesselj1( iterator ): create an iterator which iteratively evaluates the Bessel function of the first kind of order one.
- iterBessely0( iterator ): create an iterator which iteratively evaluates the Bessel function of the second kind of order zero.
- iterBessely1( iterator ): create an iterator which iteratively evaluates the Bessel function of the second kind of order one.
- iterBeta( x, y ): create an iterator which iteratively evaluates the beta function.
- iterBetaln( x, y ): create an iterator which iteratively evaluates the natural logarithm of the beta function.
- iterBinet( iterator ): create an iterator which iteratively evaluates Binet's formula extended to real numbers.
- iterCbrt( iterator ): create an iterator which iteratively computes the cube root.
- iterCeil( iterator ): create an iterator which rounds each iterated value toward positive infinity.
- iterCeil10( iterator ): create an iterator which rounds each iterated value to the nearest power of 10 toward positive infinity.
- iterCeil2( iterator ): create an iterator which rounds each iterated value to the nearest power of two toward positive infinity.
- iterCos( iterator ): create an iterator which iteratively computes the cosine.
- iterCosh( iterator ): create an iterator which computes the hyperbolic cosine for each iterated value.
- iterCosm1( iterator ): create an iterator which computes- cos(x) - 1for each iterated value.
- iterCospi( iterator ): create an iterator which computes the cosine of each iterated value times π.
- iterCovercos( iterator ): create an iterator which computes the coversed cosine for each iterated value.
- iterCoversin( iterator ): create an iterator which computes the coversed sine for each iterated value.
- iterDeg2rad( iterator ): create an iterator which converts an angle from degrees to radians for each iterated value.
- iterDigamma( iterator ): create an iterator which evaluates the digamma function for each iterated value.
- iterDiracDelta( iterator ): create an iterator which iteratively evaluates the Dirac delta function.
- iterEta( iterator ): create an iterator which iteratively evaluates the Dirichlet eta function.
- iterEllipe( iterator ): create an iterator which computes the complete elliptic integral of the second kind for each iterated value.
- iterEllipk( iterator ): create an iterator which computes the complete elliptic integral of the first kind for each iterated value.
- iterErf( iterator ): create an iterator which iteratively evaluates the error function.
- iterErfc( iterator ): create an iterator which iteratively evaluates the complementary error function.
- iterErfcinv( iterator ): create an iterator which iteratively evaluates the inverse complementary error function.
- iterErfinv( iterator ): create an iterator which iteratively evaluates the inverse error function.
- iterExp( iterator ): create an iterator which iteratively evaluates the natural exponential function.
- iterExp10( iterator ): create an iterator which evaluates the base 10 exponential function for each iterated value.
- iterExp2( iterator ): create an iterator which evaluates the base 2 exponential function for each iterated value.
- iterExpit( iterator ): create an iterator which evaluates the standard logistic function for each iterated value.
- iterExpm1( iterator ): create an iterator which computes- exp(x) - 1for each iterated value.
- iterExpm1rel( iterator ): create an iterator which evaluates the relative error exponential for each iterated value.
- iterFactorial( iterator ): create an iterator which iteratively evaluates the factorial function.
- iterFactorialln( iterator ): create an iterator which iteratively evaluates the natural logarithm of the factorial function.
- iterFloor( iterator ): create an iterator which rounds each iterated value toward negative infinity.
- iterFloor10( iterator ): create an iterator which rounds each iterated value to the nearest power of 10 toward negative infinity.
- iterFloor2( iterator ): create an iterator which rounds each iterated value to the nearest power of two toward negative infinity.
- iterFresnelc( iterator ): create an iterator which computes the Fresnel integral C(x) for each iterated value.
- iterFresnels( iterator ): create an iterator which computes the Fresnel integral S(x) for each iterated value.
- iterGamma( iterator ): create an iterator which iteratively evaluates the gamma function.
- iterGamma1pm1( iterator ): create an iterator which computes- gamma(x+1) - 1for each iterated value.
- iterGammaln( iterator ): create an iterator which iteratively evaluates the natural logarithm of the gamma function.
- iterHacovercos( iterator ): create an iterator which computes the half-value coversed cosine for each iterated value.
- iterHacoversin( iterator ): create an iterator which computes the half-value coversed sine for each iterated value.
- iterHavercos( iterator ): create an iterator which computes the half-value versed cosine for each iterated value.
- iterHaversin( iterator ): create an iterator which computes the half-value versed sine for each iterated value.
- iterInv( iterator ): create an iterator which iteratively computes the multiplicative inverse.
- iterLn( iterator ): create an iterator which iteratively evaluates the natural logarithm.
- iterLog( x, b ): create an iterator which iteratively computes the base- blogarithm.
- iterLog10( iterator ): create an iterator which iteratively evaluates the common logarithm (logarithm with base 10).
- iterLog1mexp( iterator ): create an iterator which iteratively evaluates the natural logarithm of- 1-exp(-|x|).
- iterLog1p( iterator ): create an iterator which iteratively evaluates the natural logarithm of- 1+x.
- iterLog1pexp( iterator ): create an iterator which iteratively evaluates the natural logarithm of- 1+exp(x).
- iterLog2( iterator ): create an iterator which iteratively evaluates the binary logarithm.
- iterLogit( iterator ): create an iterator which evaluates the logit function for each iterated value.
- iterPow( base, exponent ): create an iterator which iteratively evaluates the exponential function.
- iterRad2deg( iterator ): create an iterator which converts an angle from radians to degrees for each iterated value.
- iterRamp( iterator ): create an iterator which iteratively evaluates the ramp function.
- iterZeta( iterator ): create an iterator which evaluates the Riemann zeta function for each iterated value.
- iterRound( iterator ): create an iterator which rounds each iterated value to the nearest integer.
- iterRound10( iterator ): create an iterator which rounds each iterated value to the nearest power of 10 on a linear scale.
- iterRound2( iterator ): create an iterator which rounds each iterated value to the nearest power of two on a linear scale.
- iterRsqrt( iterator ): create an iterator which iteratively computes the reciprocal (inverse) square root.
- iterSignum( iterator ): create an iterator which iteratively evaluates the signum function.
- iterSin( iterator ): create an iterator which iteratively computes the sine.
- iterSinc( iterator ): create an iterator which computes the normalized cardinal sine for each iterated value.
- iterSinh( iterator ): create an iterator which evaluates the hyperbolic sine for each iterated value.
- iterSinpi( iterator ): create an iterator which computes the sine of each iterated value times π.
- iterSpence( iterator ): create an iterator which evaluates Spence's function for each iterated value.
- iterSqrt( iterator ): create an iterator which iteratively computes the principal square root.
- iterSqrt1pm1( iterator ): create an iterator which computes- sqrt(1+x) - 1for each iterated value.
- iterTan( iterator ): create an iterator which evaluates the tangent for each iterated value.
- iterTanh( iterator ): create an iterator which evaluates the hyperbolic tangent for each iterated value.
- iterTrigamma( iterator ): create an iterator which evaluates the trigamma function for each iterated value.
- iterTrunc( iterator ): create an iterator which rounds each iterated value toward zero.
- iterTrunc10( iterator ): create an iterator which rounds each iterated value to the nearest power of 10 toward zero.
- iterTrunc2( iterator ): create an iterator which rounds each iterated value to the nearest power of two toward zero.
- iterVercos( iterator ): create an iterator which computes the versed cosine for each iterated value.
- iterVersin( iterator ): create an iterator which computes the versed sine for each iterated value.
Examples
var objectKeys = require( '@stdlib/utils/keys' );
var ns = require( '@stdlib/math/iter/special' );
console.log( objectKeys( ns ) );