|  | ||
|---|---|---|
| .. | ||
| abs | ||
| abs2 | ||
| abs2f | ||
| absf | ||
| acos | ||
| acosh | ||
| acot | ||
| acoth | ||
| acovercos | ||
| acoversin | ||
| ahavercos | ||
| ahaversin | ||
| asin | ||
| asinh | ||
| atan | ||
| atan2 | ||
| atanh | ||
| avercos | ||
| aversin | ||
| bernoulli | ||
| besselj0 | ||
| besselj1 | ||
| bessely0 | ||
| bessely1 | ||
| beta | ||
| betainc | ||
| betaincinv | ||
| betaln | ||
| binet | ||
| binomcoef | ||
| binomcoefln | ||
| boxcox | ||
| boxcox1p | ||
| boxcox1pinv | ||
| boxcoxinv | ||
| cabs | ||
| cabs2 | ||
| cbrt | ||
| cbrtf | ||
| cceil | ||
| cceiln | ||
| ccis | ||
| ceil | ||
| ceil2 | ||
| ceil10 | ||
| ceilb | ||
| ceilf | ||
| ceiln | ||
| ceilsd | ||
| cexp | ||
| cflipsign | ||
| cfloor | ||
| cfloorn | ||
| cinv | ||
| clamp | ||
| clampf | ||
| copysign | ||
| cos | ||
| cosh | ||
| cosm1 | ||
| cospi | ||
| covercos | ||
| coversin | ||
| cphase | ||
| cpolar | ||
| cround | ||
| croundn | ||
| csignum | ||
| deg2rad | ||
| deg2radf | ||
| digamma | ||
| dirac-delta | ||
| dirichlet-eta | ||
| docs/types | ||
| ellipe | ||
| ellipk | ||
| erf | ||
| erfc | ||
| erfcinv | ||
| erfinv | ||
| exp | ||
| exp2 | ||
| exp10 | ||
| expit | ||
| expm1 | ||
| expm1rel | ||
| factorial | ||
| factorialln | ||
| falling-factorial | ||
| fast | ||
| fibonacci | ||
| fibonacci-index | ||
| flipsign | ||
| floor | ||
| floor2 | ||
| floor10 | ||
| floorb | ||
| floorf | ||
| floorn | ||
| floorsd | ||
| fresnel | ||
| fresnelc | ||
| fresnels | ||
| frexp | ||
| gamma | ||
| gamma-delta-ratio | ||
| gamma-lanczos-sum | ||
| gamma-lanczos-sum-expg-scaled | ||
| gamma1pm1 | ||
| gammainc | ||
| gammaincinv | ||
| gammaln | ||
| gcd | ||
| hacovercos | ||
| hacoversin | ||
| havercos | ||
| haversin | ||
| heaviside | ||
| hypot | ||
| hypotf | ||
| identity | ||
| identityf | ||
| imul | ||
| imuldw | ||
| inv | ||
| invf | ||
| kernel-betainc | ||
| kernel-betaincinv | ||
| kernel-cos | ||
| kernel-sin | ||
| kernel-tan | ||
| kronecker-delta | ||
| kronecker-deltaf | ||
| labs | ||
| lcm | ||
| ldexp | ||
| lib | ||
| ln | ||
| log | ||
| log1mexp | ||
| log1p | ||
| log1pexp | ||
| log2 | ||
| log10 | ||
| logaddexp | ||
| logit | ||
| lucas | ||
| max | ||
| maxabs | ||
| min | ||
| minabs | ||
| minmax | ||
| minmaxabs | ||
| modf | ||
| negafibonacci | ||
| negalucas | ||
| nonfibonacci | ||
| pdiff | ||
| pdifff | ||
| polygamma | ||
| pow | ||
| powm1 | ||
| rad2deg | ||
| ramp | ||
| rampf | ||
| rempio2 | ||
| riemann-zeta | ||
| rising-factorial | ||
| round | ||
| round2 | ||
| round10 | ||
| roundb | ||
| roundn | ||
| roundsd | ||
| rsqrt | ||
| rsqrtf | ||
| sici | ||
| signum | ||
| signumf | ||
| sin | ||
| sinc | ||
| sincos | ||
| sincospi | ||
| sinh | ||
| sinpi | ||
| spence | ||
| sqrt | ||
| sqrt1pm1 | ||
| sqrtf | ||
| tan | ||
| tanh | ||
| tribonacci | ||
| trigamma | ||
| trunc | ||
| trunc2 | ||
| trunc10 | ||
| truncb | ||
| truncf | ||
| truncn | ||
| truncsd | ||
| uimul | ||
| uimuldw | ||
| vercos | ||
| versin | ||
| wrap | ||
| xlog1py | ||
| xlogy | ||
| package.json | ||
| README.md | ||
Special Functions
Standard library base special math functions.
Usage
var special = require( '@stdlib/math/base/special' );
special
Standard library base special math functions.
var fcns = special;
// returns {...}
Exponential & Logarithmic Functions
- exp( x ): natural exponential function.
- exp10( x ): base- 10exponential function.
- exp2( x ): base- 2exponential function.
- expit( x ): compute the standard logistic function.
- expm1( x ): compute- exp(x) - 1.
- expm1rel( x ): compute the relative error exponential.
- ln( x ): evaluate the natural logarithm.
- log( x, b ): compute the base- blogarithm.
- log10( x ): evaluate the common logarithm.
- log1mexp( x ): evaluates the natural logarithm of- 1-exp(-|x|).
- log1p( x ): evaluate the natural logarithm of- 1+x.
- log1pexp( x ): evaluates the natural logarithm of- 1+exp(x).
- log2( x ): evaluate the binary logarithm.
- logaddexp( x, y ): evaluates the natural logarithm of- exp(x) + exp(y).
- pow( base, exponent ): exponential function.
- powm1( b, x ): evaluate- bˣ - 1.
- xlog1py( x, y ): compute- x * ln(y+1)so that the result is- 0if- x = 0.
- xlogy( x, y ): compute- x * ln(y)so that the result is- 0if- x = 0.
Trigonometric Functions
- acos( x ): compute the arccosine of a number.
- acosh( x ): compute the hyperbolic arccosine of a number.
- acovercos( x ): compute the inverse coversed cosine.
- acoversin( x ): compute the inverse coversed sine.
- ahavercos( x ): compute the inverse half-value versed cosine.
- ahaversin( x ): compute the inverse half-value versed sine.
- asin( x ): compute the arcsine of a number.
- asinh( x ): compute the hyperbolic arcsine of a number.
- atan( x ): compute the arctangent of a number.
- atan2( y, x ): compute the angle in the plane (in radians) between the positive x-axis and the ray from- (0,0)to the point- (x,y).
- atanh( x ): compute the hyperbolic arctangent of a number.
- avercos( x ): compute the inverse versed cosine.
- aversin( x ): compute the inverse versed sine.
- cos( x ): compute the cosine of a number.
- cosh( x ): compute the hyperbolic cosine of a number.
- cosm1( x ): compute- cos(x) - 1.
- cospi( x ): compute the cosine of a number times π.
- covercos( x ): compute the coversed cosine.
- coversin( x ): compute the coversed sine.
- hacovercos( x ): compute the half-value coversed cosine.
- hacoversin( x ): compute the half-value coversed sine.
- havercos( x ): compute the half-value versed cosine.
- haversin( x ): compute the half-value versed sine.
- risingFactorial( x, n ): compute the rising factorial.
- sin( x ): compute the sine of a number.
- sinc( x ): compute the cardinal sine of a number.
- sincos( [out,] x ): simultaneously compute the sine and cosine of a number.
- sincospi( [out,] x ): simultaneously compute the sine and cosine of a number times π.
- sinh( x ): compute the hyperbolic sine of a number.
- sinpi( x ): compute the sine of a number times π.
- tan( x ): evaluate the tangent of a number.
- tanh( x ): compute the hyperbolic tangent of a number.
- vercos( x ): compute the versed cosine.
- versin( x ): compute the versed sine.
Bessel Functions
- besselj0( x ): compute the Bessel function of the first kind of order zero.
- besselj1( x ): compute the Bessel function of the first kind of order one.
- bessely0( x ): compute the Bessel function of the second kind of order zero.
- bessely1( x ): compute the Bessel function of the second kind of order one.
Absolute Value and Rounding Functions
- abs( x ): compute the absolute value of a double-precision floating-point number.
- abs2( x ): compute the squared absolute value of a double-precision floating-point number.
- abs2f( x ): compute the squared absolute value of a single-precision floating-point number.
- absf( x ): compute the absolute value of a single-precision floating-point number.
- cabs( re, im ): compute an absolute value of a complex number.
- cabs2( re, im ): compute the squared absolute value of a complex number.
- cceil( [out,] re, im ): round a complex number toward positive infinity.
- cceiln( [out,] re, im, n ): round a complex number to the nearest multiple of- 10^ntoward positive infinity.
- ceil( x ): round a double-precision floating-point number toward positive infinity.
- ceil10( x ): round a numeric value to the nearest power of 10 toward positive infinity.
- ceil2( x ): round a numeric value to the nearest power of two toward positive infinity.
- ceilb( x, n, b ): round a numeric value to the nearest multiple of b^n toward positive infinity.
- ceilf( x ): round a single-precision floating-point number toward positive infinity.
- ceiln( x, n ): round a numeric value to the nearest multiple of 10^n toward positive infinity.
- ceilsd( x, n[, b] ): round a numeric value to the nearest number toward positive infinity with N significant figures.
- cfloor( [out,] re, im ): round a complex number toward negative infinity.
- cfloorn( [out,] re, im, n ): round a complex number to the nearest multiple of- 10^ntoward negative infinity.
- clamp( v, min, max ): restrict a double-precision floating-point number to a specified range.
- clampf( v, min, max ): restrict a single-precision floating-point number to a specified range.
- cround( [out,] re, im ): round a complex number to the nearest integer.
- croundn( [out,] re, im, n ): round a complex number to the nearest multiple of- 10^n.
- csignum( [out,] re, im ): evaluate the signum function of a complex number.
- floor( x ): round a double-precision floating-point number toward negative infinity.
- floor10( x ): round a numeric value to the nearest power of 10 toward negative infinity.
- floor2( x ): round a numeric value to the nearest power of two toward negative infinity.
- floorb( x, n, b ): round a numeric value to the nearest multiple of b^n toward negative infinity.
- floorf( x ): round a single-precision floating-point numeric value toward negative infinity.
- floorn( x, n ): round a numeric value to the nearest multiple of 10^n toward negative infinity.
- floorsd( x, n[, b] ): round a numeric value to the nearest number toward negative infinity with N significant figures.
- labs( x ): compute an absolute value of a signed 32-bit integer.
- maxabs( [x[, y[, ...args]]] ): return the maximum absolute value.
- minabs( [x[, y[, ...args]]] ): return the minimum absolute value.
- minmaxabs( [out,] x[, y[, ...args]] ): return the minimum and maximum absolute values.
- round( x ): round a numeric value to the nearest integer.
- round10( x ): round a numeric value to the nearest power of 10 on a linear scale.
- round2( x ): round a numeric value to the nearest power of two on a linear scale.
- roundb( x, n, b ): round a numeric value to the nearest multiple of b^n on a linear scale.
- roundn( x, n ): round a numeric value to the nearest multiple of 10^n.
- roundsd( x, n[, b] ): round a numeric value to the nearest number with- nsignificant figures.
- signum( x ): signum function.
- signumf( x ): signum function.
- trunc( x ): round a double-precision floating-point number toward zero.
- trunc10( x ): round a numeric value to the nearest power of 10 toward zero.
- trunc2( x ): round a numeric value to the nearest power of two toward zero.
- truncb( x, n, b ): round a numeric value to the nearest multiple of b^n toward zero.
- truncf( x ): round a single-precision floating-point number toward zero.
- truncn( x, n ): round a numeric value to the nearest multiple of 10^n toward zero.
- truncsd( x, n[, b] ): round a numeric value to the nearest number toward zero with- nsignificant figures.
Other Special Functions
- acot( x ): compute the inverse cotangent of a number.
- acoth( x ): compute the inverse hyperbolic cotangent of a number.
- bernoulli( n ): compute the nth Bernoulli number.
- beta( x, y ): beta function.
- betainc( x, a, b[, regularized[, upper]] ): incomplete beta function.
- betaincinv( p, a, b[, upper] ): inverse of the incomplete beta function.
- betaln( x, y ): natural logarithm of the beta function.
- binet( x ): evaluate Binet's formula extended to real numbers.
- binomcoef( n, k ): compute the binomial coefficient.
- binomcoefln( n, k ): compute the natural logarithm of the binomial coefficient.
- boxcox( x, lambda ): compute a one-parameter Box-Cox transformation.
- boxcox1p( x, lambda ): compute a one-parameter Box-Cox transformation of- 1+x.
- boxcox1pinv( y, lambda ): compute the inverse of a one-parameter Box-Cox transformation for- 1+x.
- boxcoxinv( y, lambda ): compute the inverse of a one-parameter Box-Cox transformation.
- cbrt( x ): compute the cube root of a double-precision floating-point number.
- cbrtf( x ): compute the cube root of a single-precision floating-point number.
- ccis( [out,] re, im ): compute the cis function of a complex number.
- cexp( [out,] re, im ): compute the exponential function of a complex number.
- cflipsign( [out,] re, im, y ): return a complex number with the same magnitude as- zand the sign of- y*z.
- cinv( [out,] re1, im1 ): compute the inverse of a complex number.
- copysign( x, y ): return a double-precision floating-point number with the magnitude of- xand the sign of- y.
- cphase( re, im ): compute the argument of a complex number in radians.
- cpolar( [out,] re, im ): compute the absolute value and phase of a complex number.
- deg2rad( x ): convert an angle from degrees to radians.
- deg2radf( x ): convert an angle from degrees to radians (single-precision).
- digamma( x ): digamma function.
- diracDelta( x ): evaluate the Dirac delta function.
- eta( s ): dirichlet eta function.
- ellipe( m ): compute the complete elliptic integral of the second kind.
- ellipk( m ): compute the complete elliptic integral of the first kind.
- erf( x ): error function.
- erfc( x ): complementary error function.
- erfcinv( x ): inverse complementary error function.
- erfinv( x ): inverse error function.
- factorial( x ): factorial function.
- factorialln( x ): natural logarithm of the factorial function.
- fallingFactorial( x, n ): compute the falling factorial.
- fibonacciIndex( F ): compute the Fibonacci number index.
- fibonacci( n ): compute the nth Fibonacci number.
- flipsign( x, y ): return a double-precision floating-point number with the magnitude of- xand the sign of- x*y.
- fresnel( [out,] x ): compute the Fresnel integrals S(x) and C(x).
- fresnelc( x ): compute the Fresnel integral C(x).
- fresnels( x ): compute the Fresnel integral S(x).
- frexp( [out,] x ): split a double-precision floating-point number into a normalized fraction and an integer power of two.
- gamma( x ): gamma function.
- gamma1pm1( x ): compute- gamma(x+1) - 1.
- gammainc( x, s[, regularized[, upper ]] ): incomplete gamma function.
- gammaincinv( p, s[, upper ] ): inverse of incomplete gamma function.
- gammaln( x ): natural logarithm of the gamma function.
- gcd( a, b ): compute the greatest common divisor (gcd).
- heaviside( x[, continuity] ): evaluate the Heaviside function.
- hypot( x, y ): compute the hypotenuse avoiding overflow and underflow.
- hypotf( x, y ): compute the hypotenuse avoiding overflow and underflow (single-precision).
- identity( x ): evaluate the identity function of a double-precision floating-point number.
- identityf( x ): evaluate the identity function of a single-precision floating-point number.
- imul( a, b ): perform C-like multiplication of two signed 32-bit integers.
- imuldw( [out,] a, b ): compute the double word product of two signed 32-bit integers.
- inv( x ): compute the multiplicative inverse of a double-precision floating-point number.
- invf( x ): compute the multiplicative inverse of a single-precision floating-point number.
- kroneckerDelta( i, j ): evaluate the Kronecker delta.
- kroneckerDeltaf( i, j ): evaluate the Kronecker delta (single-precision).
- lcm( a, b ): compute the least common multiple (lcm).
- ldexp( frac, exp ): multiply a double-precision floating-point number by an integer power of two.
- lucas( n ): compute the nth Lucas number.
- max( [x[, y[, ...args]]] ): return the maximum value.
- min( [x[, y[, ...args]]] ): return the minimum value.
- minmax( [out,] x[, y[, ...args]] ): return the minimum and maximum values.
- modf( [out,] x ): decompose a double-precision floating-point number into integral and fractional parts.
- negafibonacci( n ): compute the nth negaFibonacci number.
- negalucas( n ): compute the nth negaLucas number.
- nonfibonacci( n ): compute the nth non-Fibonacci number.
- pdiff( x, y ): return the positive difference between- xand- y.
- pdifff( x, y ): return the positive difference between- xand- y.
- polygamma( n, x ): polygamma function.
- rad2deg( x ): convert an angle from radians to degrees.
- ramp( x ): evaluate the ramp function.
- rampf( x ): evaluate the ramp function.
- zeta( s ): riemann zeta function.
- rsqrt( x ): compute the reciprocal of the principal square root of a double-precision floating-point number.
- rsqrtf( x ): compute the reciprocal of the principal square root of a single-precision floating-point number.
- sici( [out,] x ): compute the sine and cosine integrals.
- spence( x ): spence’s function, also known as the dilogarithm.
- sqrt( x ): compute the principal square root of a double-precision floating-point number.
- sqrt1pm1( x ): compute- sqrt( 1 + x ) - 1.
- sqrtf( x ): compute the principal square root of a single-precision floating-point number.
- tribonacci( n ): compute the nth Tribonacci number.
- trigamma( x ): trigamma function.
- uimul( a, b ): perform C-like multiplication of two unsigned 32-bit integers.
- uimuldw( [out,] a, b ): compute the double word product of two unsigned 32-bit integers.
- wrap( v, min, max ): wrap a value on the half-open interval- [min,max).
Fast algorithms of various special functions, which trade accuracy for increased speed, are available in the following sub-namespace:
- fast: standard library fast math special functions.
Finally, the namespace exports the following kernel functions, which are mainly used internally. Beware that they may only be applicable for input values inside a certain number range and/or may not work as expected if not all arguments satisfy the parameter requirements.
- kernelBetainc( x, a, b, regularized, upper ): incomplete beta function and its first derivative.
- kernelBetaincinv( a, b, p, q ): inverse of the lower incomplete beta function.
- kernelCos( x, y ): compute the cosine of a number on- [-π/4, π/4].
- kernelSin( x, y ): compute the sine of a number on- [-π/4, π/4].
- kernelTan( x, y, k ): compute the tangent of a number on- [-π/4, π/4].
- rempio2( x, y ): compute- x - nπ/2 = r.
Examples
var objectKeys = require( '@stdlib/utils/keys' );
var special = require( '@stdlib/math/base/special' );
console.log( objectKeys( special ) );