189 lines
5.2 KiB
JavaScript
189 lines
5.2 KiB
JavaScript
/**
|
|
* @license Apache-2.0
|
|
*
|
|
* Copyright (c) 2018 The Stdlib Authors.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
'use strict';
|
|
|
|
// MODULES //
|
|
|
|
var ndarray = require( '@stdlib/ndarray/array' );
|
|
var linspace = require( '@stdlib/array/linspace' );
|
|
var setReadOnly = require( '@stdlib/utils/define-read-only-property' );
|
|
var isNumericArray = require( '@stdlib/assert/is-numeric-array' );
|
|
var isMatrixLike = require( '@stdlib/assert/is-matrix-like' );
|
|
var pickBandwidth = require( './pick_bandwidth.js' );
|
|
var validate = require( './validate.js' );
|
|
var ndarrayLike = require( './ndarray_like.js' );
|
|
var min = require( './min.js' );
|
|
var max = require( './max.js' );
|
|
var gaussian = require( './gaussian.js' );
|
|
|
|
|
|
// MAIN //
|
|
|
|
/**
|
|
* Computes two-dimensional kernel density estimates.
|
|
*
|
|
* @param {NumericArray} x - array of x values
|
|
* @param {NumericArray} y - array of y values
|
|
* @param {Options} [options] - function options
|
|
* @param {NumericArray} [options.h] - array of length two containing the bandwidth values for x and y
|
|
* @param {number} [options.n=25] - number of partitions on the x- and y-axes
|
|
* @param {number} [options.xMin] - lower limit of x
|
|
* @param {number} [options.xMax] - upper limit of x
|
|
* @param {number} [options.yMin] - lower limit of y
|
|
* @param {number} [options.yMax] - upper limit of y
|
|
* @param {(string|Function)} [options.kernel='gaussian'] - a string or function to specifying the used kernel function
|
|
* @throws {TypeError} first argument must be an array or matrix-like
|
|
* @throws {TypeError} second argument must be an array
|
|
* @throws {Error} first and second arguments must be of the same length
|
|
* @throws {RangeError} `xMin` must be smaller than `xMax`
|
|
* @throws {RangeError} `yMin` must be smaller than `yMax`
|
|
* @throws {TypeError} options argument must be an object
|
|
* @throws {TypeError} must provide valid options
|
|
* @returns {Object} object containing the density estimates (`z`) along grid points (`x` and `y` values)
|
|
*
|
|
* @example
|
|
* var x = [ 0.6333, 0.8643, 1.0952, 1.3262, 1.5571, 1.7881, 2.019, 2.25, 2.481, 2.7119 ];
|
|
* var y = [ -0.0468, 0.8012, 1.6492, 2.4973, 3.3454, 4.1934, 5.0415, 5.8896, 6.7376, 7.5857 ];
|
|
* var out = kde2d( x, y );
|
|
*/
|
|
function kde2d() {
|
|
var kernelFunction;
|
|
var maxArgs;
|
|
var zScoreX;
|
|
var zScoreY;
|
|
var gridX;
|
|
var gridY;
|
|
var xMin;
|
|
var xMax;
|
|
var yMin;
|
|
var yMax;
|
|
var xVal; // For gridspace loop
|
|
var yVal; // For gridspace loop
|
|
var subX;
|
|
var subY;
|
|
var opts;
|
|
var arr;
|
|
var err;
|
|
var ans;
|
|
var out;
|
|
var gx;
|
|
var gy;
|
|
var hX;
|
|
var hY;
|
|
var ix;
|
|
var iy;
|
|
var x;
|
|
var y;
|
|
var i;
|
|
var n;
|
|
var z;
|
|
|
|
opts = {};
|
|
|
|
if ( isMatrixLike( arguments[0] ) ) {
|
|
// Case of ndarray, opts
|
|
arr = arguments[ 0 ];
|
|
maxArgs = 1;
|
|
} else {
|
|
x = arguments[ 0 ];
|
|
y = arguments[ 1 ];
|
|
if ( !isNumericArray( x ) ) {
|
|
throw new TypeError( 'invalid argument. First argument `x` must be a numeric array. Value: `' + x + '`.' );
|
|
}
|
|
if ( !isNumericArray( y ) ) {
|
|
throw new TypeError( 'invalid argument. Second argument `y` must be a numeric array. Value: `' + y + '`.' );
|
|
}
|
|
if ( x.length !== y.length ) {
|
|
throw new Error( 'invalid arguments. Arguments `x` and `y` must be arrays of the same length' );
|
|
}
|
|
arr = ndarrayLike( x, y );
|
|
maxArgs = 2;
|
|
}
|
|
|
|
if ( arguments.length > maxArgs ) {
|
|
err = validate( opts, arguments[ maxArgs ] );
|
|
if ( err ) {
|
|
throw err;
|
|
}
|
|
}
|
|
|
|
if ( opts.h ) {
|
|
hX = opts.h[0];
|
|
hY = opts.h[1];
|
|
} else {
|
|
hX = pickBandwidth(arr, 0);
|
|
hY = pickBandwidth(arr, 1);
|
|
}
|
|
|
|
n = opts.n || 25;
|
|
xMin = opts.xMin || min( arr, 0, arr.shape[0] );
|
|
xMax = opts.xMax || max( arr, 0, arr.shape[0] );
|
|
yMin = opts.yMin || min( arr, 1, arr.shape[0] );
|
|
yMax = opts.yMax || max( arr, 1, arr.shape[0] );
|
|
|
|
if ( xMin >= xMax ) {
|
|
throw new RangeError( '`x` min must be strictly less than max' );
|
|
}
|
|
if ( yMin >= yMax ) {
|
|
throw new RangeError( '`y` min must be strictly less than max' );
|
|
}
|
|
|
|
kernelFunction = opts.kernel || gaussian;
|
|
|
|
// Create the `ndarray` to hold the density values:
|
|
z = ndarray({
|
|
'shape': [n, n]
|
|
} );
|
|
|
|
// Make the grid:
|
|
gridX = linspace(xMin, xMax, n);
|
|
gridY = linspace(yMin, yMax, n);
|
|
|
|
// Loop through x and y indices:
|
|
for ( ix = 0; ix < gridX.length; ix++ ) {
|
|
gx = gridX[ ix ];
|
|
for ( iy = 0; iy < gridY.length; iy++ ) {
|
|
gy = gridY[ iy ];
|
|
ans = 0.0;
|
|
for ( i = 0; i < arr.shape[ 0 ]; i++ ) {
|
|
xVal = arr.get( i, 0 );
|
|
yVal = arr.get( i, 1 );
|
|
|
|
zScoreX = ( (xVal - gx) / hX );
|
|
zScoreY = ( (yVal - gy) / hY );
|
|
|
|
subX = ( 1.0 / hX ) * kernelFunction( zScoreX );
|
|
subY = ( 1.0 / hY ) * kernelFunction( zScoreY );
|
|
ans += ( subX * subY );
|
|
}
|
|
z.set( ix, iy, ans / arr.shape[0] );
|
|
}
|
|
}
|
|
out = {};
|
|
setReadOnly( out, 'x', gridX );
|
|
setReadOnly( out, 'y', gridY );
|
|
setReadOnly( out, 'z', z );
|
|
return out;
|
|
}
|
|
|
|
|
|
// EXPORTS //
|
|
|
|
module.exports = kde2d;
|