121 lines
3.0 KiB
JavaScript
121 lines
3.0 KiB
JavaScript
/**
|
|
* @license Apache-2.0
|
|
*
|
|
* Copyright (c) 2019 The Stdlib Authors.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
'use strict';
|
|
|
|
/**
|
|
* Returns an accumulator function which incrementally computes a weighted arithmetic mean.
|
|
*
|
|
* ## Method
|
|
*
|
|
* - The weighted arithmetic mean is defined as
|
|
*
|
|
* ```tex
|
|
* \mu = \frac{\sum_{i=0}^{n-1} w_i x_i}{\sum_{i=0}^{n-1} w_i}
|
|
* ```
|
|
*
|
|
* where \\( w_i \\) are the weights.
|
|
*
|
|
* - The weighted arithmetic mean is equivalent to the simple arithmetic mean when all weights are equal.
|
|
*
|
|
* ```tex
|
|
* \begin{align*}
|
|
* \mu &= \frac{\sum_{i=0}^{n-1} w x_i}{\sum_{i=0}^{n-1} w} \\
|
|
* &= \frac{w\sum_{i=0}^{n-1} x_i}{nw} \\
|
|
* &= \frac{1}{n} \sum_{i=0}^{n-1}
|
|
* \end{align*}
|
|
* ```
|
|
*
|
|
* - If the weights are different, then one can view weights either as sample frequencies or as a means to calculate probabilities where \\( p_i = w_i / \sum w_i \\).
|
|
*
|
|
* - To derive an incremental formula for computing a weighted arithmetic mean, let
|
|
*
|
|
* ```tex
|
|
* W_n = \sum_{i=1}^{n} w_i
|
|
* ```
|
|
*
|
|
* - Accordingly,
|
|
*
|
|
* ```tex
|
|
* \begin{align*}
|
|
* \mu_n &= \frac{1}{W_n} \sum_{i=1}^{n} w_i x_i \\
|
|
* &= \frac{1}{W_n} \biggl(w_n x_n + \sum_{i=1}^{n-1} w_i x_i \biggr) \\
|
|
* &= \frac{1}{W_n} (w_n x_n + W_{n-1} \mu_{n-1}) \\
|
|
* &= \frac{1}{W_n} (w_n x_n + (W_n - w_n) \mu_{n-1}) \\
|
|
* &= \frac{1}{W_n} (W_n \mu_{n-1} + w_n x_n - w_n\mu_{n-1}) \\
|
|
* &= \mu_{n-1} + \frac{w_n}{W_n} (x_n - \mu_{n-1})
|
|
* \end{align*}
|
|
* ```
|
|
*
|
|
* @returns {Function} accumulator function
|
|
*
|
|
* @example
|
|
* var accumulator = incrwmean();
|
|
*
|
|
* var mu = accumulator();
|
|
* // returns null
|
|
*
|
|
* mu = accumulator( 2.0, 1.0 );
|
|
* // returns 2.0
|
|
*
|
|
* mu = accumulator( 2.0, 0.5 );
|
|
* // returns 2.0
|
|
*
|
|
* mu = accumulator( 3.0, 1.5 );
|
|
* // returns 2.5
|
|
*
|
|
* mu = accumulator();
|
|
* // returns 2.5
|
|
*/
|
|
function incrwmean() {
|
|
var wsum;
|
|
var FLG;
|
|
var mu;
|
|
|
|
wsum = 0.0;
|
|
mu = 0.0;
|
|
|
|
return accumulator;
|
|
|
|
/**
|
|
* If provided arguments, the accumulator function returns an updated weighted mean. If not provided arguments, the accumulator function returns the current weighted mean.
|
|
*
|
|
* @private
|
|
* @param {number} [x] - value
|
|
* @param {number} [w] - weight
|
|
* @returns {(number|null)} weighted mean or null
|
|
*/
|
|
function accumulator( x, w ) {
|
|
if ( arguments.length === 0 ) {
|
|
if ( FLG === void 0 ) {
|
|
return null;
|
|
}
|
|
return mu;
|
|
}
|
|
FLG = true;
|
|
wsum += w;
|
|
mu += ( w/wsum ) * ( x-mu );
|
|
return mu;
|
|
}
|
|
}
|
|
|
|
|
|
// EXPORTS //
|
|
|
|
module.exports = incrwmean;
|