|
||
---|---|---|
.. | ||
docs | ||
lib | ||
package.json | ||
README.md |
Quantile Function
Kumaraswamy's double bounded distribution quantile function.
The quantile function for a Kumaraswamy's double bounded random variable is
for 0 <= p <= 1
, where a > 0
is the first shape parameter and b > 0
is the second shape parameter.
Usage
var quantile = require( '@stdlib/stats/base/dists/kumaraswamy/quantile' );
quantile( p, a, b )
Evaluates the quantile function for a Kumaraswamy's double bounded distribution with parameters a
(first shape parameter) and b
(second shape parameter).
var y = quantile( 0.5, 1.0, 1.0 );
// returns 0.5
y = quantile( 0.5, 2.0, 4.0 );
// returns ~0.399
y = quantile( 0.2, 2.0, 2.0 );
// returns ~0.325
y = quantile( 0.8, 4.0, 4.0 );
// returns ~0.759
If provided a probability p
outside the interval [0,1]
, the function returns NaN
.
var y = quantile( -0.5, 4.0, 2.0 );
// returns NaN
y = quantile( 1.5, 4.0, 2.0 );
// returns NaN
If provided NaN
as any argument, the function returns NaN
.
var y = quantile( NaN, 1.0, 1.0 );
// returns NaN
y = quantile( 0.2, NaN, 1.0 );
// returns NaN
y = quantile( 0.2, 1.0, NaN );
// returns NaN
If provided a <= 0
, the function returns NaN
.
var y = quantile( 0.2, -1.0, 0.5 );
// returns NaN
y = quantile( 0.2, 0.0, 0.5 );
// returns NaN
If provided b <= 0
, the function returns NaN
.
var y = quantile( 0.2, 0.5, -1.0 );
// returns NaN
y = quantile( 0.2, 0.5, 0.0 );
// returns NaN
quantile.factory( a, b )
Returns a function for evaluating the quantile function for a Kumaraswamy's double bounded distribution with parameters a
(first shape parameter) and b
(second shape parameter).
var myQuantile = quantile.factory( 0.5, 0.5 );
var y = myQuantile( 0.8 );
// returns ~0.922
y = myQuantile( 0.3 );
// returns ~0.26
Examples
var randu = require( '@stdlib/random/base/randu' );
var EPS = require( '@stdlib/constants/float64/eps' );
var quantile = require( '@stdlib/stats/base/dists/kumaraswamy/quantile' );
var a;
var b;
var p;
var y;
var i;
for ( i = 0; i < 10; i++ ) {
p = randu();
a = ( randu()*5.0 ) + EPS;
b = ( randu()*5.0 ) + EPS;
y = quantile( p, a, b );
console.log( 'p: %d, a: %d, b: %d, Q(p;a,b): %d', p.toFixed( 4 ), a.toFixed( 4 ), b.toFixed( 4 ), y.toFixed( 4 ) );
}