72 lines
2.1 KiB
JavaScript
72 lines
2.1 KiB
JavaScript
/**
|
||
* @license Apache-2.0
|
||
*
|
||
* Copyright (c) 2018 The Stdlib Authors.
|
||
*
|
||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||
* you may not use this file except in compliance with the License.
|
||
* You may obtain a copy of the License at
|
||
*
|
||
* http://www.apache.org/licenses/LICENSE-2.0
|
||
*
|
||
* Unless required by applicable law or agreed to in writing, software
|
||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
* See the License for the specific language governing permissions and
|
||
* limitations under the License.
|
||
*/
|
||
|
||
'use strict';
|
||
|
||
// MODULES //
|
||
|
||
var factorial = require( '@stdlib/math/base/special/factorial' );
|
||
|
||
|
||
// MAIN //
|
||
|
||
/**
|
||
* Returns a pseudorandom number drawn from a hypergeometric distribution using the HIN algorithm, which is based on an inverse transformation method.
|
||
*
|
||
* ## References
|
||
*
|
||
* - Fishman, George S. 1973. _Concepts and methods in discrete event digital simulation_. A Wiley-Interscience Publication. New York, NY, USA: Wiley.
|
||
* - Kachitvichyanukul, Voratas., and Burce Schmeiser. 1985. "Computer generation of hypergeometric random variates." _Journal of Statistical Computation and Simulation_ 22 (2): 127–45. doi:[10.1080/00949658508810839][@kachitvichyanukul:1985].
|
||
*
|
||
* [@kachitvichyanukul:1985]: http://dx.doi.org/10.1080/00949658508810839
|
||
*
|
||
*
|
||
* @private
|
||
* @param {PRNG} rand - PRNG for uniformly distributed numbers
|
||
* @param {NonNegativeInteger} n1 - number of successes in population
|
||
* @param {NonNegativeInteger} n2 - number of failures in population
|
||
* @param {NonNegativeInteger} k - number of draws
|
||
* @returns {NonNegativeInteger} pseudorandom number
|
||
*/
|
||
function hin( rand, n1, n2, k ) {
|
||
var p;
|
||
var u;
|
||
var x;
|
||
if ( k < n2 ) {
|
||
p = ( factorial( n2 ) * factorial( n1 + n2 - k ) ) /
|
||
( factorial( n1 + n2 ) * factorial( n2 - k ) );
|
||
x = 0;
|
||
} else {
|
||
p = ( factorial( n1 ) * factorial( k ) ) /
|
||
( factorial( k - n2 ) * factorial( n1 + n2 ) );
|
||
x = k - n2;
|
||
}
|
||
u = rand();
|
||
while ( u > p ) {
|
||
u -= p;
|
||
p *= ( n1 - x ) * ( k - x ) / ( ( x + 1 ) * ( n2 - k + 1 + x ) );
|
||
x += 1;
|
||
}
|
||
return x;
|
||
}
|
||
|
||
|
||
// EXPORTS //
|
||
|
||
module.exports = hin;
|