time-to-botec/squiggle/node_modules/@stdlib/stats/incr/meanvar/lib/main.js
NunoSempere b6addc7f05 feat: add the node modules
Necessary in order to clearly see the squiggle hotwiring.
2022-12-03 12:44:49 +00:00

163 lines
4.4 KiB
JavaScript
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/**
* @license Apache-2.0
*
* Copyright (c) 2018 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
'use strict';
// MODULES //
var isArrayLike = require( '@stdlib/assert/is-array-like-object' );
var isnan = require( '@stdlib/math/base/assert/is-nan' );
// MAIN //
/**
* Returns an accumulator function which incrementally computes an arithmetic mean and unbiased sample variance.
*
* ## Method
*
*
* - This implementation uses Welford's algorithm for efficient computation, which can be derived as follows. Let
*
* ```tex
* \begin{align*}
* S_n &= n \sigma_n^2 \\
* &= \sum_{i=1}^{n} (x_i - \mu_n)^2 \\
* &= \biggl(\sum_{i=1}^{n} x_i^2 \biggr) - n\mu_n^2
* \end{align*}
* ```
*
* Accordingly,
*
* ```tex
* \begin{align*}
* S_n - S_{n-1} &= \sum_{i=1}^{n} x_i^2 - n\mu_n^2 - \sum_{i=1}^{n-1} x_i^2 + (n-1)\mu_{n-1}^2 \\
* &= x_n^2 - n\mu_n^2 + (n-1)\mu_{n-1}^2 \\
* &= x_n^2 - \mu_{n-1}^2 + n(\mu_{n-1}^2 - \mu_n^2) \\
* &= x_n^2 - \mu_{n-1}^2 + n(\mu_{n-1} - \mu_n)(\mu_{n-1} + \mu_n) \\
* &= x_n^2 - \mu_{n-1}^2 + (\mu_{n-1} - x_n)(\mu_{n-1} + \mu_n) \\
* &= x_n^2 - \mu_{n-1}^2 + \mu_{n-1}^2 - x_n\mu_n - x_n\mu_{n-1} + \mu_n\mu_{n-1} \\
* &= x_n^2 - x_n\mu_n - x_n\mu_{n-1} + \mu_n\mu_{n-1} \\
* &= (x_n - \mu_{n-1})(x_n - \mu_n) \\
* &= S_{n-1} + (x_n - \mu_{n-1})(x_n - \mu_n)
* \end{align*}
* ```
*
* where we use the identity
*
* ```tex
* x_n - \mu_{n-1} = n (\mu_n - \mu_{n-1})
* ```
*
* ## References
*
* - Welford, B. P. 1962. "Note on a Method for Calculating Corrected Sums of Squares and Products." _Technometrics_ 4 (3). Taylor & Francis: 41920. doi:[10.1080/00401706.1962.10490022](https://doi.org/10.1080/00401706.1962.10490022).
* - van Reeken, A. J. 1968. "Letters to the Editor: Dealing with Neely's Algorithms." _Communications of the ACM_ 11 (3): 14950. doi:[10.1145/362929.362961](https://doi.org/10.1145/362929.362961).
*
* @param {Collection} [out] - output array
* @throws {TypeError} output argument must be array-like
* @returns {Function} accumulator function
*
* @example
* var accumulator = incrmeanvar();
*
* var mv = accumulator();
* // returns null
*
* mv = accumulator( 2.0 );
* // returns [ 2.0, 0.0 ]
*
* mv = accumulator( -5.0 );
* // returns [ -1.5, 24.5 ]
*
* mv = accumulator( 3.0 );
* // returns [ 0.0, 19.0 ]
*
* mv = accumulator( 5.0 );
* // returns [ 1.25, ~18.92 ]
*
* mv = accumulator();
* // returns [ 1.25, ~18.92 ]
*/
function incrmeanvar( out ) {
var meanvar;
var delta;
var mu;
var M2;
var N;
if ( arguments.length === 0 ) {
meanvar = [ 0.0, 0.0 ];
} else {
if ( !isArrayLike( out ) ) {
throw new TypeError( 'invalid argument. Output argument must be an array-like object. Value: `' + out + '`.' );
}
meanvar = out;
}
M2 = 0.0;
mu = 0.0;
N = 0;
return accumulator;
/**
* If provided a value, the accumulator function returns updated results. If not provided a value, the accumulator function returns the current results.
*
* @private
* @param {number} [x] - input value
* @returns {(ArrayLikeObject|null)} output array or null
*/
function accumulator( x ) {
if ( arguments.length === 0 ) {
if ( N === 0 ) {
return null;
}
meanvar[ 0 ] = mu; // Why? Because we cannot guarantee someone hasn't mutated the output array
if ( N === 1 ) {
if ( isnan( M2 ) ) {
meanvar[ 1 ] = NaN;
} else {
meanvar[ 1 ] = 0.0;
}
return meanvar;
}
meanvar[ 1 ] = M2 / (N-1);
return meanvar;
}
N += 1;
delta = x - mu;
mu += delta / N;
M2 += delta * ( x - mu );
meanvar[ 0 ] = mu;
if ( N < 2 ) {
if ( isnan( M2 ) ) {
meanvar[ 1 ] = NaN;
} else {
meanvar[ 1 ] = 0.0;
}
return meanvar;
}
meanvar[ 1 ] = M2 / (N-1);
return meanvar;
}
}
// EXPORTS //
module.exports = incrmeanvar;