91 lines
		
	
	
		
			3.0 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
			
		
		
	
	
			91 lines
		
	
	
		
			3.0 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
/**
 | 
						||
* @license Apache-2.0
 | 
						||
*
 | 
						||
* Copyright (c) 2020 The Stdlib Authors.
 | 
						||
*
 | 
						||
* Licensed under the Apache License, Version 2.0 (the "License");
 | 
						||
* you may not use this file except in compliance with the License.
 | 
						||
* You may obtain a copy of the License at
 | 
						||
*
 | 
						||
*    http://www.apache.org/licenses/LICENSE-2.0
 | 
						||
*
 | 
						||
* Unless required by applicable law or agreed to in writing, software
 | 
						||
* distributed under the License is distributed on an "AS IS" BASIS,
 | 
						||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						||
* See the License for the specific language governing permissions and
 | 
						||
* limitations under the License.
 | 
						||
*/
 | 
						||
 | 
						||
'use strict';
 | 
						||
 | 
						||
// MAIN //
 | 
						||
 | 
						||
/**
 | 
						||
* Computes the variance of a strided array using a one-pass trial mean algorithm.
 | 
						||
*
 | 
						||
* ## Method
 | 
						||
*
 | 
						||
* -   This implementation uses a one-pass trial mean approach, as suggested by Chan et al (1983).
 | 
						||
*
 | 
						||
* ## References
 | 
						||
*
 | 
						||
* -   Neely, Peter M. 1966. "Comparison of Several Algorithms for Computation of Means, Standard Deviations and Correlation Coefficients." _Communications of the ACM_ 9 (7). Association for Computing Machinery: 496–99. doi:[10.1145/365719.365958](https://doi.org/10.1145/365719.365958).
 | 
						||
* -   Ling, Robert F. 1974. "Comparison of Several Algorithms for Computing Sample Means and Variances." _Journal of the American Statistical Association_ 69 (348). American Statistical Association, Taylor & Francis, Ltd.: 859–66. doi:[10.2307/2286154](https://doi.org/10.2307/2286154).
 | 
						||
* -   Chan, Tony F., Gene H. Golub, and Randall J. LeVeque. 1983. "Algorithms for Computing the Sample Variance: Analysis and Recommendations." _The American Statistician_ 37 (3). American Statistical Association, Taylor & Francis, Ltd.: 242–47. doi:[10.1080/00031305.1983.10483115](https://doi.org/10.1080/00031305.1983.10483115).
 | 
						||
* -   Schubert, Erich, and Michael Gertz. 2018. "Numerically Stable Parallel Computation of (Co-)Variance." In _Proceedings of the 30th International Conference on Scientific and Statistical Database Management_. New York, NY, USA: Association for Computing Machinery. doi:[10.1145/3221269.3223036](https://doi.org/10.1145/3221269.3223036).
 | 
						||
*
 | 
						||
* @param {PositiveInteger} N - number of indexed elements
 | 
						||
* @param {number} correction - degrees of freedom adjustment
 | 
						||
* @param {NumericArray} x - input array
 | 
						||
* @param {integer} stride - stride length
 | 
						||
* @returns {number} variance
 | 
						||
*
 | 
						||
* @example
 | 
						||
* var x = [ 1.0, -2.0, 2.0 ];
 | 
						||
* var N = x.length;
 | 
						||
*
 | 
						||
* var v = variancech( N, 1, x, 1 );
 | 
						||
* // returns ~4.3333
 | 
						||
*/
 | 
						||
function variancech( N, correction, x, stride ) {
 | 
						||
	var mu;
 | 
						||
	var ix;
 | 
						||
	var M2;
 | 
						||
	var M;
 | 
						||
	var d;
 | 
						||
	var n;
 | 
						||
	var i;
 | 
						||
 | 
						||
	n = N - correction;
 | 
						||
	if ( N <= 0 || n <= 0.0 ) {
 | 
						||
		return NaN;
 | 
						||
	}
 | 
						||
	if ( N === 1 || stride === 0 ) {
 | 
						||
		return 0.0;
 | 
						||
	}
 | 
						||
	if ( stride < 0 ) {
 | 
						||
		ix = (1-N) * stride;
 | 
						||
	} else {
 | 
						||
		ix = 0;
 | 
						||
	}
 | 
						||
	// Use an estimate for the mean:
 | 
						||
	mu = x[ ix ];
 | 
						||
	ix += stride;
 | 
						||
 | 
						||
	// Compute the variance...
 | 
						||
	M2 = 0.0;
 | 
						||
	M = 0.0;
 | 
						||
	for ( i = 1; i < N; i++ ) {
 | 
						||
		d = x[ ix ] - mu;
 | 
						||
		M2 += d * d;
 | 
						||
		M += d;
 | 
						||
		ix += stride;
 | 
						||
	}
 | 
						||
	return (M2/n) - ((M/N)*(M/n));
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
// EXPORTS //
 | 
						||
 | 
						||
module.exports = variancech;
 |