time-to-botec/js/node_modules/@stdlib/math/base/special/ldexp
NunoSempere b6addc7f05 feat: add the node modules
Necessary in order to clearly see the squiggle hotwiring.
2022-12-03 12:44:49 +00:00
..
docs feat: add the node modules 2022-12-03 12:44:49 +00:00
lib feat: add the node modules 2022-12-03 12:44:49 +00:00
package.json feat: add the node modules 2022-12-03 12:44:49 +00:00
README.md feat: add the node modules 2022-12-03 12:44:49 +00:00

ldexp

Multiply a double-precision floating-point number by an integer power of two.

Usage

var ldexp = require( '@stdlib/math/base/special/ldexp' );

ldexp( frac, exp )

Multiplies a double-precision floating-point number by an integer power of two; i.e., x = frac * 2^exp.

var x = ldexp( 0.5, 3 ); // => 0.5 * 2^3 = 0.5 * 8
// returns 4.0

x = ldexp( 4.0, -2 ); // => 4 * 2^(-2) = 4 * (1/4)
// returns 1.0

If frac equals positive or negative zero, NaN, or positive or negative infinity, the function returns a value equal to frac.

var x = ldexp( 0.0, 20 );
// returns 0.0

x = ldexp( -0.0, 39 );
// returns -0.0

x = ldexp( NaN, -101 );
// returns NaN

x = ldexp( Infinity, 11 );
// returns Infinity

x = ldexp( -Infinity, -118 );
// returns -Infinity

Notes

  • This function is the inverse of frexp.

Examples

var randu = require( '@stdlib/random/base/randu' );
var round = require( '@stdlib/math/base/special/round' );
var pow = require( '@stdlib/math/base/special/pow' );
var frexp = require( '@stdlib/math/base/special/frexp' );
var ldexp = require( '@stdlib/math/base/special/ldexp' );

var sign;
var frac;
var exp;
var x;
var f;
var v;
var i;

/*
* 1) Generate random numbers.
* 2) Break each number into a normalized fraction and an integer power of two.
* 3) Reconstitute the original number.
*/
for ( i = 0; i < 100; i++ ) {
    if ( randu() < 0.5 ) {
        sign = -1.0;
    } else {
        sign = 1.0;
    }
    frac = randu() * 10.0;
    exp = round( randu()*616.0 ) - 308;
    x = sign * frac * pow( 10.0, exp );
    f = frexp( x );
    v = ldexp( f[ 0 ], f[ 1 ] );
    console.log( '%d = %d * 2^%d = %d', x, f[ 0 ], f[ 1 ], v );
}