time-to-botec/C/samples/samples.c
NunoSempere 57fc886bed feat: More progress
- Add C
- Time the different languages.
- Wrap Squiggle in a js runtime.
2022-12-01 15:04:37 +00:00

142 lines
3.3 KiB
C
Executable File

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>
#define N 10000000
/*
* For very high values of N, you will want to increase the maximum stack trace, otherwise you will suffer a segmentation fault
* In Ubuntu/bash you can do this with $ ulimit -Ss 256000 ## ~256Mbs
* And confirm it with $ ulimit -a
*/
/* Helpers */
void print(double *ys){
for(int i=0; i<N; i++){
printf("%f\n", ys[i]);
}
printf("\n");
}
void fill(double *ys, float f){
for(int i=0; i<N; i++){
ys[i] = f;
}
}
double sum(double *ps, int n){
double result = 0;
for(int i=0; i<n; i++){
result += ps[i];
}
return(result);
}
void cumsum(double *ps, double *rs, int n){
double counter = 0;
for(int i=0; i<n; i++){
counter += ps[i];
rs[i] = counter;
}
}
/* Distributions*/
void normal(gsl_rng * r, double *ys, double mean, double std){
for(int i=0; i<N; i++){
ys[i] = mean + gsl_ran_gaussian(r, std);
}
}
void lognormal(gsl_rng * r, double *ys, double zeta, double sigma){
for(int i=0; i<N; i++){
ys[i] = gsl_ran_lognormal(r, zeta, sigma);
}
}
void to(gsl_rng * r, double *ys, double low, double high){
double normal95confidencePoint = 1.6448536269514722;
double log_low = log(low);
double log_high = log(high);
double zeta = (log_low + log_high)/2;
double sigma = (log_high - log_low) / (2.0 * normal95confidencePoint);
lognormal(r, ys, zeta, sigma);
}
/* Mixture of distributions */
void mixture(gsl_rng * r, double *dists[], double *weights, int n, double *results){
/* Get cummulative, normalized weights */
double sum_weights = sum(weights, n);
double normalized_weights[n];
for(int i=0; i<n; i++){
normalized_weights[i] = weights[i]/sum_weights;
}
double cummulative_weights[n];
cumsum(normalized_weights, cummulative_weights, n);
/* Get N uniformly distributed vars */
for(int i=0; i<N; i++){
double p_1 = gsl_rng_uniform(r);
double p_2 = gsl_rng_uniform(r);
int index_found = 0;
int index_counter = 0;
while ((index_found == 0) && (index_counter < n) ){
if(p_1 < cummulative_weights[index_counter]){
index_found = 1;
}else{
index_counter++;
}
}
if(index_found == 0) {
printf("\nThis shouldn't have happened");
// gsl_rng_free (r);
// abort(); // this shouldn't have happened.
}else{
int sample_index = (int) floor(p_2 * N);
results[i] = dists[index_counter][sample_index];
}
}
}
/* Main */
int main(void){
/* Initialize GNU Statistical Library (GSL) stuff */
const gsl_rng_type * T;
gsl_rng * r;
// gsl_rng_env_setup();
T = gsl_rng_default;
r = gsl_rng_alloc (T);
/* Toy example */
/* Declare variables in play */
double p_a, p_b, p_c;
double dist_none[N], dist_one[N], dist_few[N], dist_many[N], dist_mixture[N];
/* Initialize variables */
p_a = 0.8;
p_b = 0.5;
p_c = p_a * p_b;
fill(dist_none, 0);
fill(dist_one, 1);
to(r, dist_few, 1, 3);
to(r, dist_many, 2, 10);
/* Generate mixture */
int n = 4;
double weights[] = { 1 - p_c, p_c/2, p_c/4, p_c/4};
double *dists[] = { dist_none, dist_one, dist_few, dist_many };
mixture(r, dists, weights, n, dist_mixture);
printf("%f\n", sum(dist_mixture, N)/N);
/* Clean up GSL */
gsl_rng_free (r);
/* Return success*/
return EXIT_SUCCESS;
}