|
|
||
|---|---|---|
| .. | ||
| docs | ||
| lib | ||
| package.json | ||
| README.md | ||
Logarithm of Cumulative Distribution Function
Rayleigh distribution logarithm of cumulative distribution function.
The cumulative distribution function for a Rayleigh random variable is
where sigma > 0 is the scale parameter.
Usage
var logcdf = require( '@stdlib/stats/base/dists/rayleigh/logcdf' );
logcdf( x, sigma )
Evaluates the logarithm of the cumulative distribution function for a Rayleigh distribution with scale parameter sigma.
var y = logcdf( 2.0, 3.0 );
// returns ~-1.613
y = logcdf( 1.0, 2.0 );
// returns ~-2.141
y = logcdf( -1.0, 4.0 );
// returns -Infinity
If provided NaN as any argument, the function returns NaN.
var y = logcdf( NaN, 1.0 );
// returns NaN
y = logcdf( 0.0, NaN );
// returns NaN
If provided sigma < 0, the function returns NaN.
var y = logcdf( 2.0, -1.0 );
// returns NaN
If provided sigma = 0, the function evaluates the logarithm of the CDF for a degenerate distribution centered at 0.
var y = logcdf( -2.0, 0.0 );
// returns -Infinity
y = logcdf( 0.0, 0.0 );
// returns 0.0
y = logcdf( 2.0, 0.0 );
// returns 0.0
logcdf.factory( sigma )
Returns a function for evaluating the logarithm of the cumulative distribution function of a Rayleigh distribution with parameter sigma (scale parameter).
var mylogCDF = logcdf.factory( 0.5 );
y = mylogCDF( 1.0 );
// returns ~-0.145
y = mylogCDF( 0.5 );
// returns ~-0.933
Notes
- In virtually all cases, using the
logpdforlogcdffunctions is preferable to manually computing the logarithm of thepdforcdf, respectively, since the latter is prone to overflow and underflow.
Examples
var randu = require( '@stdlib/random/base/randu' );
var logcdf = require( '@stdlib/stats/base/dists/rayleigh/logcdf' );
var sigma;
var x;
var y;
var i;
for ( i = 0; i < 10; i++ ) {
x = randu() * 10.0;
sigma = randu() * 10.0;
y = logcdf( x, sigma );
console.log( 'x: %d, σ: %d, log(F(x;σ)): %d', x.toFixed( 4 ), sigma.toFixed( 4 ), y.toFixed( 4 ) );
}