time-to-botec/squiggle/node_modules/@stdlib/random/base/improved-ziggurat/lib/main.js
NunoSempere b6addc7f05 feat: add the node modules
Necessary in order to clearly see the squiggle hotwiring.
2022-12-03 12:44:49 +00:00

79 lines
2.8 KiB
JavaScript
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/**
* @license Apache-2.0
*
* Copyright (c) 2018 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
'use strict';
// MODULES //
var factory = require( './factory.js' );
// MAIN //
/**
* Generates a standard normally distributed random number.
*
* ## Method
*
* The basic Ziggurat method works as follows:
*
*
* ```tex
* x_{C-1}(r) \left[ f(0) - f\left( x_{C-1}(r) \right) \right] - V(r) = 0
* ```
*
* where
*
* ```tex
* V(r) = r \; f(r) + \int_r^\infty \; f(x) \; dx
* ```
*
* and \\( r \\) denotes the right-most \\( x_1 \\).
*
* - We then use the following rejection algorithm:
*
* - Draw a box \\( B_i \\) at random with probability \\( \tfrac{1}{C} \\).
* - Draw a random number from the box as \\( z = U_0 x_i \\) for \\( i > 0 \\) and \\( z = U_0 V / f(x_1) \\).
* - If \\( z < x_{i+1} \\), accept \\( z \\).
* - If \\( i = 0 \\), accept a \\( v \\) by transforming the tail of the normal distribution to the unit interval and then use rejection technique by Marsaglia, G. (1964) to generate a standard normal variable. Otherwise, if \\( i > 0 \\) and \\( U_1 \left[ f(x_i) - f(x_{i+1})\right] < f(z) - f(x_{i+1}) \\) accept \\( z \\).
* - Go back to the first step.
*
* - The improved version by Doornik (2005) changes step four in order to correct a deficiency of the original Ziggurat algorithm. The updated version requires the generation of two random numbers, a uniform variable drawn from \\( U(-1,1) \\) and the last seven bits of a random integer.
*
* ## References
*
* - Doornik, Jurgen A. 2005. "An Improved Ziggurat Method to Generate Normal Random Samples." <https://www.doornik.com/research/ziggurat.pdf>.
* - Marsaglia, George, and Wai Wan Tsang. 2000. "The Ziggurat Method for Generating Random Variables." _Journal of Statistical Software_ 5 (1): 17. doi:[10.18637/jss.v005.i08](http://dx.doi.org/10.18637/jss.v005.i08).
* - Marsaglia, George. 1964. "Generating a Variable from the Tail of the Normal Distribution." _Technometrics_ 6 (1): 1012. doi:[10.1080/00401706.1964.10490150](http://dx.doi.org/10.1080/00401706.1964.10490150).
*
*
* @name randn
* @type {PRNG}
* @returns {number} pseudorandom number
*
* @example
* var r = randn();
* // returns <number>
*/
var randn = factory();
// EXPORTS //
module.exports = randn;