|
|
||
|---|---|---|
| .. | ||
| cumax | ||
| cumaxabs | ||
| cumin | ||
| cuminabs | ||
| dcumax | ||
| dcumaxabs | ||
| dcumin | ||
| dcuminabs | ||
| dists | ||
| dmax | ||
| dmaxabs | ||
| dmaxabssorted | ||
| dmaxsorted | ||
| dmean | ||
| dmeankbn | ||
| dmeankbn2 | ||
| dmeanli | ||
| dmeanlipw | ||
| dmeanors | ||
| dmeanpn | ||
| dmeanpw | ||
| dmeanstdev | ||
| dmeanstdevpn | ||
| dmeanvar | ||
| dmeanvarpn | ||
| dmeanwd | ||
| dmediansorted | ||
| dmidrange | ||
| dmin | ||
| dminabs | ||
| dminsorted | ||
| dmskmax | ||
| dmskmin | ||
| dmskrange | ||
| dnanmax | ||
| dnanmaxabs | ||
| dnanmean | ||
| dnanmeanors | ||
| dnanmeanpn | ||
| dnanmeanpw | ||
| dnanmeanwd | ||
| dnanmin | ||
| dnanminabs | ||
| dnanmskmax | ||
| dnanmskmin | ||
| dnanmskrange | ||
| dnanrange | ||
| dnanstdev | ||
| dnanstdevch | ||
| dnanstdevpn | ||
| dnanstdevtk | ||
| dnanstdevwd | ||
| dnanstdevyc | ||
| dnanvariance | ||
| dnanvariancech | ||
| dnanvariancepn | ||
| dnanvariancetk | ||
| dnanvariancewd | ||
| dnanvarianceyc | ||
| docs/types | ||
| drange | ||
| dsem | ||
| dsemch | ||
| dsempn | ||
| dsemtk | ||
| dsemwd | ||
| dsemyc | ||
| dsmean | ||
| dsmeanors | ||
| dsmeanpn | ||
| dsmeanpw | ||
| dsmeanwd | ||
| dsnanmean | ||
| dsnanmeanors | ||
| dsnanmeanpn | ||
| dsnanmeanwd | ||
| dstdev | ||
| dstdevch | ||
| dstdevpn | ||
| dstdevtk | ||
| dstdevwd | ||
| dstdevyc | ||
| dsvariance | ||
| dsvariancepn | ||
| dvariance | ||
| dvariancech | ||
| dvariancepn | ||
| dvariancetk | ||
| dvariancewd | ||
| dvarianceyc | ||
| dvarm | ||
| dvarmpn | ||
| dvarmtk | ||
| lib | ||
| max | ||
| max-by | ||
| maxabs | ||
| maxsorted | ||
| mean | ||
| meankbn | ||
| meankbn2 | ||
| meanors | ||
| meanpn | ||
| meanpw | ||
| meanwd | ||
| mediansorted | ||
| min | ||
| min-by | ||
| minabs | ||
| minsorted | ||
| mskmax | ||
| mskmin | ||
| mskrange | ||
| nanmax | ||
| nanmax-by | ||
| nanmaxabs | ||
| nanmean | ||
| nanmeanors | ||
| nanmeanpn | ||
| nanmeanwd | ||
| nanmin | ||
| nanmin-by | ||
| nanminabs | ||
| nanmskmax | ||
| nanmskmin | ||
| nanmskrange | ||
| nanrange | ||
| nanrange-by | ||
| nanstdev | ||
| nanstdevch | ||
| nanstdevpn | ||
| nanstdevtk | ||
| nanstdevwd | ||
| nanstdevyc | ||
| nanvariance | ||
| nanvariancech | ||
| nanvariancepn | ||
| nanvariancetk | ||
| nanvariancewd | ||
| nanvarianceyc | ||
| range | ||
| range-by | ||
| scumax | ||
| scumaxabs | ||
| scumin | ||
| scuminabs | ||
| sdsmean | ||
| sdsmeanors | ||
| sdsnanmean | ||
| sdsnanmeanors | ||
| smax | ||
| smaxabs | ||
| smaxabssorted | ||
| smaxsorted | ||
| smean | ||
| smeankbn | ||
| smeankbn2 | ||
| smeanli | ||
| smeanlipw | ||
| smeanors | ||
| smeanpn | ||
| smeanpw | ||
| smeanwd | ||
| smediansorted | ||
| smidrange | ||
| smin | ||
| sminabs | ||
| sminsorted | ||
| smskmax | ||
| smskmin | ||
| smskrange | ||
| snanmax | ||
| snanmaxabs | ||
| snanmean | ||
| snanmeanors | ||
| snanmeanpn | ||
| snanmeanwd | ||
| snanmin | ||
| snanminabs | ||
| snanmskmax | ||
| snanmskmin | ||
| snanmskrange | ||
| snanrange | ||
| snanstdev | ||
| snanstdevch | ||
| snanstdevpn | ||
| snanstdevtk | ||
| snanstdevwd | ||
| snanstdevyc | ||
| snanvariance | ||
| snanvariancech | ||
| snanvariancepn | ||
| snanvariancetk | ||
| snanvariancewd | ||
| snanvarianceyc | ||
| srange | ||
| sstdev | ||
| sstdevch | ||
| sstdevpn | ||
| sstdevtk | ||
| sstdevwd | ||
| sstdevyc | ||
| stdev | ||
| stdevch | ||
| stdevpn | ||
| stdevtk | ||
| stdevwd | ||
| stdevyc | ||
| svariance | ||
| svariancech | ||
| svariancepn | ||
| svariancetk | ||
| svariancewd | ||
| svarianceyc | ||
| variance | ||
| variancech | ||
| variancepn | ||
| variancetk | ||
| variancewd | ||
| varianceyc | ||
| package.json | ||
| README.md | ||
Base Statistics
Standard library base statistical functions.
Usage
var stats = require( '@stdlib/stats/base' );
stats
Standard library base statistical functions.
var ns = stats;
// returns {...}
The namespace contains the following sub-namespaces:
dists: standard library probability distribution modules.
The namespace contains the following statistical functions:
cumax( N, x, strideX, y, strideY ): calculate the cumulative maximum of a strided array.cumaxabs( N, x, strideX, y, strideY ): calculate the cumulative maximum absolute value of a strided array.cumin( N, x, strideX, y, strideY ): calculate the cumulative minimum of a strided array.cuminabs( N, x, strideX, y, strideY ): calculate the cumulative minimum absolute value of a strided array.dcumax( N, x, strideX, y, strideY ): calculate the cumulative maximum of double-precision floating-point strided array elements.dcumaxabs( N, x, strideX, y, strideY ): calculate the cumulative maximum absolute value of double-precision floating-point strided array elements.dcumin( N, x, strideX, y, strideY ): calculate the cumulative minimum of double-precision floating-point strided array elements.dcuminabs( N, x, strideX, y, strideY ): calculate the cumulative minimum absolute value of double-precision floating-point strided array elements.dmax( N, x, stride ): calculate the maximum value of a double-precision floating-point strided array.dmaxabs( N, x, stride ): calculate the maximum absolute value of a double-precision floating-point strided array.dmaxabssorted( N, x, stride ): calculate the maximum absolute value of a sorted double-precision floating-point strided array.dmaxsorted( N, x, stride ): calculate the maximum value of a sorted double-precision floating-point strided array.dmean( N, x, stride ): calculate the arithmetic mean of a double-precision floating-point strided array.dmeankbn( N, x, stride ): calculate the arithmetic mean of a double-precision floating-point strided array using an improved Kahan–Babuška algorithm.dmeankbn2( N, x, stride ): calculate the arithmetic mean of a double-precision floating-point strided array using a second-order iterative Kahan–Babuška algorithm.dmeanli( N, x, stride ): calculate the arithmetic mean of a double-precision floating-point strided array using a one-pass trial mean algorithm.dmeanlipw( N, x, stride ): calculate the arithmetic mean of a double-precision floating-point strided array using a one-pass trial mean algorithm with pairwise summation.dmeanors( N, x, stride ): calculate the arithmetic mean of a double-precision floating-point strided array using ordinary recursive summation.dmeanpn( N, x, stride ): calculate the arithmetic mean of a double-precision floating-point strided array using a two-pass error correction algorithm.dmeanpw( N, x, stride ): calculate the arithmetic mean of a double-precision floating-point strided array using pairwise summation.dmeanstdev( N, correction, x, strideX, out, strideOut ): calculate the mean and standard deviation of a double-precision floating-point strided array.dmeanstdevpn( N, correction, x, strideX, out, strideOut ): calculate the mean and standard deviation of a double-precision floating-point strided array using a two-pass algorithm.dmeanvar( N, correction, x, strideX, out, strideOut ): calculate the mean and variance of a double-precision floating-point strided array.dmeanvarpn( N, correction, x, strideX, out, strideOut ): calculate the mean and variance of a double-precision floating-point strided array using a two-pass algorithm.dmeanwd( N, x, stride ): calculate the arithmetic mean of a double-precision floating-point strided array using Welford's algorithm.dmediansorted( N, x, stride ): calculate the median value of a sorted double-precision floating-point strided array.dmidrange( N, x, stride ): calculate the mid-range of a double-precision floating-point strided array.dmin( N, x, stride ): calculate the minimum value of a double-precision floating-point strided array.dminabs( N, x, stride ): calculate the minimum absolute value of a double-precision floating-point strided array.dminsorted( N, x, stride ): calculate the minimum value of a sorted double-precision floating-point strided array.dmskmax( N, x, strideX, mask, strideMask ): calculate the maximum value of a double-precision floating-point strided array according to a mask.dmskmin( N, x, strideX, mask, strideMask ): calculate the minimum value of a double-precision floating-point strided array according to a mask.dmskrange( N, x, strideX, mask, strideMask ): calculate the range of a double-precision floating-point strided array according to a mask.dnanmax( N, x, stride ): calculate the maximum value of a double-precision floating-point strided array, ignoringNaNvalues.dnanmaxabs( N, x, stride ): calculate the maximum absolute value of a double-precision floating-point strided array, ignoringNaNvalues.dnanmean( N, x, stride ): calculate the arithmetic mean of a double-precision floating-point strided array, ignoringNaNvalues.dnanmeanors( N, x, stride ): calculate the arithmetic mean of a double-precision floating-point strided array, ignoringNaNvalues and using ordinary recursive summation.dnanmeanpn( N, x, stride ): calculate the arithmetic mean of a double-precision floating-point strided array, ignoringNaNvalues and using a two-pass error correction algorithm.dnanmeanpw( N, x, stride ): calculate the arithmetic mean of a double-precision floating-point strided array, ignoringNaNvalues and using pairwise summation.dnanmeanwd( N, x, stride ): calculate the arithmetic mean of a double-precision floating-point strided array, using Welford's algorithm and ignoringNaNvalues.dnanmin( N, x, stride ): calculate the minimum value of a double-precision floating-point strided array, ignoringNaNvalues.dnanminabs( N, x, stride ): calculate the minimum absolute value of a double-precision floating-point strided array, ignoringNaNvalues.dnanmskmax( N, x, strideX, mask, strideMask ): calculate the maximum value of a double-precision floating-point strided array according to a mask, ignoringNaNvalues.dnanmskmin( N, x, strideX, mask, strideMask ): calculate the minimum value of a double-precision floating-point strided array according to a mask, ignoringNaNvalues.dnanmskrange( N, x, strideX, mask, strideMask ): calculate the range of a double-precision floating-point strided array according to a mask, ignoringNaNvalues.dnanrange( N, x, stride ): calculate the range of a double-precision floating-point strided array, ignoringNaNvalues.dnanstdev( N, correction, x, stride ): calculate the standard deviation of a double-precision floating-point strided array ignoringNaNvalues.dnanstdevch( N, correction, x, stride ): calculate the standard deviation of a double-precision floating-point strided array ignoringNaNvalues and using a one-pass trial mean algorithm.dnanstdevpn( N, correction, x, stride ): calculate the standard deviation of a double-precision floating-point strided array ignoringNaNvalues and using a two-pass algorithm.dnanstdevtk( N, correction, x, stride ): calculate the standard deviation of a double-precision floating-point strided array ignoringNaNvalues and using a one-pass textbook algorithm.dnanstdevwd( N, correction, x, stride ): calculate the standard deviation of a double-precision floating-point strided array ignoringNaNvalues and using Welford's algorithm.dnanstdevyc( N, correction, x, stride ): calculate the standard deviation of a double-precision floating-point strided array ignoringNaNvalues and using a one-pass algorithm proposed by Youngs and Cramer.dnanvariance( N, correction, x, stride ): calculate the variance of a double-precision floating-point strided array ignoringNaNvalues.dnanvariancech( N, correction, x, stride ): calculate the variance of a double-precision floating-point strided array ignoringNaNvalues and using a one-pass trial mean algorithm.dnanvariancepn( N, correction, x, stride ): calculate the variance of a double-precision floating-point strided array ignoringNaNvalues and using a two-pass algorithm.dnanvariancetk( N, correction, x, stride ): calculate the variance of a double-precision floating-point strided array ignoringNaNvalues and using a one-pass textbook algorithm.dnanvariancewd( N, correction, x, stride ): calculate the variance of a double-precision floating-point strided array ignoringNaNvalues and using Welford's algorithm.dnanvarianceyc( N, correction, x, stride ): calculate the variance of a double-precision floating-point strided array ignoringNaNvalues and using a one-pass algorithm proposed by Youngs and Cramer.drange( N, x, stride ): calculate the range of a double-precision floating-point strided array.dsem( N, correction, x, stride ): calculate the standard error of the mean of a double-precision floating-point strided array.dsemch( N, correction, x, stride ): calculate the standard error of the mean of a double-precision floating-point strided array using a one-pass trial mean algorithm.dsempn( N, correction, x, stride ): calculate the standard error of the mean of a double-precision floating-point strided array using a two-pass algorithm.dsemtk( N, correction, x, stride ): calculate the standard error of the mean of a double-precision floating-point strided array using a one-pass textbook algorithm.dsemwd( N, correction, x, stride ): calculate the standard error of the mean of a double-precision floating-point strided array using Welford's algorithm.dsemyc( N, correction, x, stride ): calculate the standard error of the mean of a double-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.dsmean( N, x, stride ): calculate the arithmetic mean of a single-precision floating-point strided array using extended accumulation and returning an extended precision result.dsmeanors( N, x, stride ): calculate the arithmetic mean of a single-precision floating-point strided array using ordinary recursive summation with extended accumulation and returning an extended precision result.dsmeanpn( N, x, stride ): calculate the arithmetic mean of a single-precision floating-point strided array using a two-pass error correction algorithm with extended accumulation and returning an extended precision result.dsmeanpw( N, x, stride ): calculate the arithmetic mean of a single-precision floating-point strided array using pairwise summation with extended accumulation and returning an extended precision result.dsmeanwd( N, x, stride ): calculate the arithmetic mean of a single-precision floating-point strided array using Welford's algorithm with extended accumulation and returning an extended precision result.dsnanmean( N, x, stride ): calculate the arithmetic mean of a single-precision floating-point strided array, ignoringNaNvalues, using extended accumulation, and returning an extended precision result.dsnanmeanors( N, x, stride ): calculate the arithmetic mean of a single-precision floating-point strided array, ignoringNaNvalues, using ordinary recursive summation with extended accumulation, and returning an extended precision result.dsnanmeanpn( N, x, stride ): calculate the arithmetic mean of a single-precision floating-point strided array, ignoringNaNvalues, using a two-pass error correction algorithm with extended accumulation, and returning an extended precision result.dsnanmeanwd( N, x, stride ): calculate the arithmetic mean of a single-precision floating-point strided array, ignoringNaNvalues, using Welford's algorithm with extended accumulation, and returning an extended precision result.dstdev( N, correction, x, stride ): calculate the standard deviation of a double-precision floating-point strided array.dstdevch( N, correction, x, stride ): calculate the standard deviation of a double-precision floating-point strided array using a one-pass trial mean algorithm.dstdevpn( N, correction, x, stride ): calculate the standard deviation of a double-precision floating-point strided array using a two-pass algorithm.dstdevtk( N, correction, x, stride ): calculate the standard deviation of a double-precision floating-point strided array using a one-pass textbook algorithm.dstdevwd( N, correction, x, stride ): calculate the standard deviation of a double-precision floating-point strided array using Welford's algorithm.dstdevyc( N, correction, x, stride ): calculate the standard deviation of a double-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.dsvariance( N, correction, x, stride ): calculate the variance of a single-precision floating-point strided array using extended accumulation and returning an extended precision result.dsvariancepn( N, correction, x, stride ): calculate the variance of a single-precision floating-point strided array using a two-pass algorithm with extended accumulation and returning an extended precision result.dvariance( N, correction, x, stride ): calculate the variance of a double-precision floating-point strided array.dvariancech( N, correction, x, stride ): calculate the variance of a double-precision floating-point strided array using a one-pass trial mean algorithm.dvariancepn( N, correction, x, stride ): calculate the variance of a double-precision floating-point strided array using a two-pass algorithm.dvariancetk( N, correction, x, stride ): calculate the variance of a double-precision floating-point strided array using a one-pass textbook algorithm.dvariancewd( N, correction, x, stride ): calculate the variance of a double-precision floating-point strided array using Welford's algorithm.dvarianceyc( N, correction, x, stride ): calculate the variance of a double-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.dvarm( N, mean, correction, x, stride ): calculate the variance of a double-precision floating-point strided array provided a known mean.dvarmpn( N, mean, correction, x, stride ): calculate the variance of a double-precision floating-point strided array provided a known mean and using Neely's correction algorithm.dvarmtk( N, mean, correction, x, stride ): calculate the variance of a double-precision floating-point strided array provided a known mean and using a one-pass textbook algorithm.maxBy( N, x, stride, clbk[, thisArg] ): calculate the maximum value of a strided array via a callback function.max( N, x, stride ): calculate the maximum value of a strided array.maxabs( N, x, stride ): calculate the maximum absolute value of a strided array.maxsorted( N, x, stride ): calculate the maximum value of a sorted strided array.mean( N, x, stride ): calculate the arithmetic mean of a strided array.meankbn( N, x, stride ): calculate the arithmetic mean of a strided array using an improved Kahan–Babuška algorithm.meankbn2( N, x, stride ): calculate the arithmetic mean of a strided array using a second-order iterative Kahan–Babuška algorithm.meanors( N, x, stride ): calculate the arithmetic mean of a strided array using ordinary recursive summation.meanpn( N, x, stride ): calculate the arithmetic mean of a strided array using a two-pass error correction algorithm.meanpw( N, x, stride ): calculate the arithmetic mean of a strided array using pairwise summation.meanwd( N, x, stride ): calculate the arithmetic mean of a strided array using Welford's algorithm.mediansorted( N, x, stride ): calculate the median value of a sorted strided array.minBy( N, x, stride, clbk[, thisArg] ): calculate the minimum value of a strided array via a callback function.min( N, x, stride ): calculate the minimum value of a strided array.minabs( N, x, stride ): calculate the minimum absolute value of a strided array.minsorted( N, x, stride ): calculate the minimum value of a sorted strided array.mskmax( N, x, strideX, mask, strideMask ): calculate the maximum value of a strided array according to a mask.mskmin( N, x, strideX, mask, strideMask ): calculate the minimum value of a strided array according to a mask.mskrange( N, x, strideX, mask, strideMask ): calculate the range of a strided array according to a mask.nanmaxBy( N, x, stride, clbk[, thisArg] ): calculate the maximum value of a strided array via a callback function, ignoringNaNvalues.nanmax( N, x, stride ): calculate the maximum value of a strided array, ignoringNaNvalues.nanmaxabs( N, x, stride ): calculate the maximum absolute value of a strided array, ignoringNaNvalues.nanmean( N, x, stride ): calculate the arithmetic mean of a strided array, ignoringNaNvalues.nanmeanors( N, x, stride ): calculate the arithmetic mean of a strided array, ignoringNaNvalues and using ordinary recursive summation.nanmeanpn( N, x, stride ): calculate the arithmetic mean of a strided array, ignoringNaNvalues and using a two-pass error correction algorithm.nanmeanwd( N, x, stride ): calculate the arithmetic mean of a strided array, ignoringNaNvalues and using Welford's algorithm.nanminBy( N, x, stride, clbk[, thisArg] ): calculate the minimum value of a strided array via a callback function, ignoringNaNvalues.nanmin( N, x, stride ): calculate the minimum value of a strided array, ignoringNaNvalues.nanminabs( N, x, stride ): calculate the minimum absolute value of a strided array, ignoringNaNvalues.nanmskmax( N, x, strideX, mask, strideMask ): calculate the maximum value of a strided array according to a mask, ignoringNaNvalues.nanmskmin( N, x, strideX, mask, strideMask ): calculate the minimum value of a strided array according to a mask, ignoringNaNvalues.nanmskrange( N, x, strideX, mask, strideMask ): calculate the range of a strided array according to a mask, ignoringNaNvalues.nanrangeBy( N, x, stride, clbk[, thisArg] ): calculate the range of a strided array via a callback function, ignoringNaNvalues.nanrange( N, x, stride ): calculate the range of a strided array, ignoringNaNvalues.nanstdev( N, correction, x, stride ): calculate the standard deviation of a strided array ignoringNaNvalues.nanstdevch( N, correction, x, stride ): calculate the standard deviation of a strided array ignoringNaNvalues and using a one-pass trial mean algorithm.nanstdevpn( N, correction, x, stride ): calculate the standard deviation of a strided array ignoringNaNvalues and using a two-pass algorithm.nanstdevtk( N, correction, x, stride ): calculate the standard deviation of a strided array ignoringNaNvalues and using a one-pass textbook algorithm.nanstdevwd( N, correction, x, stride ): calculate the standard deviation of a strided array ignoringNaNvalues and using Welford's algorithm.nanstdevyc( N, correction, x, stride ): calculate the standard deviation of a strided array ignoringNaNvalues and using a one-pass algorithm proposed by Youngs and Cramer.nanvariance( N, correction, x, stride ): calculate the variance of a strided array ignoringNaNvalues.nanvariancech( N, correction, x, stride ): calculate the variance of a strided array ignoringNaNvalues and using a one-pass trial mean algorithm.nanvariancepn( N, correction, x, stride ): calculate the variance of a strided array ignoringNaNvalues and using a two-pass algorithm.nanvariancetk( N, correction, x, stride ): calculate the variance of a strided array ignoringNaNvalues and using a one-pass textbook algorithm.nanvariancewd( N, correction, x, stride ): calculate the variance of a strided array ignoringNaNvalues and using Welford's algorithm.nanvarianceyc( N, correction, x, stride ): calculate the variance of a strided array ignoringNaNvalues and using a one-pass algorithm proposed by Youngs and Cramer.rangeBy( N, x, stride, clbk[, thisArg] ): calculate the range of a strided array via a callback function.range( N, x, stride ): calculate the range of a strided array.scumax( N, x, strideX, y, strideY ): calculate the cumulative maximum of single-precision floating-point strided array elements.scumaxabs( N, x, strideX, y, strideY ): calculate the cumulative maximum absolute value of single-precision floating-point strided array elements.scumin( N, x, strideX, y, strideY ): calculate the cumulative minimum of single-precision floating-point strided array elements.scuminabs( N, x, strideX, y, strideY ): calculate the cumulative minimum absolute value of single-precision floating-point strided array elements.sdsmean( N, x, stride ): calculate the arithmetic mean of a single-precision floating-point strided array using extended accumulation.sdsmeanors( N, x, stride ): calculate the arithmetic mean of a single-precision floating-point strided array using ordinary recursive summation with extended accumulation.sdsnanmean( N, x, stride ): calculate the arithmetic mean of a single-precision floating-point strided array, ignoringNaNvalues and using extended accumulation.sdsnanmeanors( N, x, stride ): calculate the arithmetic mean of a single-precision floating-point strided array, ignoringNaNvalues and using ordinary recursive summation with extended accumulation.smax( N, x, stride ): calculate the maximum value of a single-precision floating-point strided array.smaxabs( N, x, stride ): calculate the maximum absolute value of a single-precision floating-point strided array.smaxabssorted( N, x, stride ): calculate the maximum absolute value of a sorted single-precision floating-point strided array.smaxsorted( N, x, stride ): calculate the maximum value of a sorted single-precision floating-point strided array.smean( N, x, stride ): calculate the arithmetic mean of a single-precision floating-point strided array.smeankbn( N, x, stride ): calculate the arithmetic mean of a single-precision floating-point strided array using an improved Kahan–Babuška algorithm.smeankbn2( N, x, stride ): calculate the arithmetic mean of a single-precision floating-point strided array using a second-order iterative Kahan–Babuška algorithm.smeanli( N, x, stride ): calculate the arithmetic mean of a single-precision floating-point strided array using a one-pass trial mean algorithm.smeanlipw( N, x, stride ): calculate the arithmetic mean of a single-precision floating-point strided array using a one-pass trial mean algorithm with pairwise summation.smeanors( N, x, stride ): calculate the arithmetic mean of a single-precision floating-point strided array using ordinary recursive summation.smeanpn( N, x, stride ): calculate the arithmetic mean of a single-precision floating-point strided array using a two-pass error correction algorithm.smeanpw( N, x, stride ): calculate the arithmetic mean of a single-precision floating-point strided array using pairwise summation.smeanwd( N, x, stride ): calculate the arithmetic mean of a single-precision floating-point strided array using Welford's algorithm.smediansorted( N, x, stride ): calculate the median value of a sorted single-precision floating-point strided array.smidrange( N, x, stride ): calculate the mid-range of a single-precision floating-point strided array.smin( N, x, stride ): calculate the minimum value of a single-precision floating-point strided array.sminabs( N, x, stride ): calculate the minimum absolute value of a single-precision floating-point strided array.sminsorted( N, x, stride ): calculate the minimum value of a sorted single-precision floating-point strided array.smskmax( N, x, strideX, mask, strideMask ): calculate the maximum value of a single-precision floating-point strided array according to a mask.smskmin( N, x, strideX, mask, strideMask ): calculate the minimum value of a single-precision floating-point strided array according to a mask.smskrange( N, x, strideX, mask, strideMask ): calculate the range of a single-precision floating-point strided array according to a mask.snanmax( N, x, stride ): calculate the maximum value of a single-precision floating-point strided array, ignoringNaNvalues.snanmaxabs( N, x, stride ): calculate the maximum absolute value of a single-precision floating-point strided array, ignoringNaNvalues.snanmean( N, x, stride ): calculate the arithmetic mean of a single-precision floating-point strided array, ignoringNaNvalues.snanmeanors( N, x, stride ): calculate the arithmetic mean of a single-precision floating-point strided array, ignoringNaNvalues and using ordinary recursive summation.snanmeanpn( N, x, stride ): calculate the arithmetic mean of a single-precision floating-point strided array, ignoringNaNvalues and using a two-pass error correction algorithm.snanmeanwd( N, x, stride ): calculate the arithmetic mean of a single-precision floating-point strided array, ignoringNaNvalues and using Welford's algorithm.snanmin( N, x, stride ): calculate the minimum value of a single-precision floating-point strided array, ignoringNaNvalues.snanminabs( N, x, stride ): calculate the minimum absolute value of a single-precision floating-point strided array, ignoringNaNvalues.snanmskmax( N, x, strideX, mask, strideMask ): calculate the maximum value of a single-precision floating-point strided array according to a mask, ignoringNaNvalues.snanmskmin( N, x, strideX, mask, strideMask ): calculate the minimum value of a single-precision floating-point strided array according to a mask, ignoringNaNvalues.snanmskrange( N, x, strideX, mask, strideMask ): calculate the range of a single-precision floating-point strided array according to a mask, ignoringNaNvalues.snanrange( N, x, stride ): calculate the range of a single-precision floating-point strided array, ignoringNaNvalues.snanstdev( N, correction, x, stride ): calculate the standard deviation of a single-precision floating-point strided array ignoringNaNvalues.snanstdevch( N, correction, x, stride ): calculate the standard deviation of a single-precision floating-point strided array ignoringNaNvalues and using a one-pass trial mean algorithm.snanstdevpn( N, correction, x, stride ): calculate the standard deviation of a single-precision floating-point strided array ignoringNaNvalues and using a two-pass algorithm.snanstdevtk( N, correction, x, stride ): calculate the standard deviation of a single-precision floating-point strided array ignoringNaNvalues and using a one-pass textbook algorithm.snanstdevwd( N, correction, x, stride ): calculate the standard deviation of a single-precision floating-point strided array ignoringNaNvalues and using Welford's algorithm.snanstdevyc( N, correction, x, stride ): calculate the standard deviation of a single-precision floating-point strided array ignoringNaNvalues and using a one-pass algorithm proposed by Youngs and Cramer.snanvariance( N, correction, x, stride ): calculate the variance of a single-precision floating-point strided array ignoringNaNvalues.snanvariancech( N, correction, x, stride ): calculate the variance of a single-precision floating-point strided array ignoringNaNvalues and using a one-pass trial mean algorithm.snanvariancepn( N, correction, x, stride ): calculate the variance of a single-precision floating-point strided array ignoringNaNvalues and using a two-pass algorithm.snanvariancetk( N, correction, x, stride ): calculate the variance of a single-precision floating-point strided array ignoringNaNvalues and using a one-pass textbook algorithm.snanvariancewd( N, correction, x, stride ): calculate the variance of a single-precision floating-point strided array ignoringNaNvalues and using Welford's algorithm.snanvarianceyc( N, correction, x, stride ): calculate the variance of a single-precision floating-point strided array ignoringNaNvalues and using a one-pass algorithm proposed by Youngs and Cramer.srange( N, x, stride ): calculate the range of a single-precision floating-point strided array.sstdev( N, correction, x, stride ): calculate the standard deviation of a single-precision floating-point strided array.sstdevch( N, correction, x, stride ): calculate the standard deviation of a single-precision floating-point strided array using a one-pass trial mean algorithm.sstdevpn( N, correction, x, stride ): calculate the standard deviation of a single-precision floating-point strided array using a two-pass algorithm.sstdevtk( N, correction, x, stride ): calculate the standard deviation of a single-precision floating-point strided array using a one-pass textbook algorithm.sstdevwd( N, correction, x, stride ): calculate the standard deviation of a single-precision floating-point strided array using Welford's algorithm.sstdevyc( N, correction, x, stride ): calculate the standard deviation of a single-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.stdev( N, correction, x, stride ): calculate the standard deviation of a strided array.stdevch( N, correction, x, stride ): calculate the standard deviation of a strided array using a one-pass trial mean algorithm.stdevpn( N, correction, x, stride ): calculate the standard deviation of a strided array using a two-pass algorithm.stdevtk( N, correction, x, stride ): calculate the standard deviation of a strided array using a one-pass textbook algorithm.stdevwd( N, correction, x, stride ): calculate the standard deviation of a strided array using Welford's algorithm.stdevyc( N, correction, x, stride ): calculate the standard deviation of a strided array using a one-pass algorithm proposed by Youngs and Cramer.svariance( N, correction, x, stride ): calculate the variance of a single-precision floating-point strided array.svariancech( N, correction, x, stride ): calculate the variance of a single-precision floating-point strided array using a one-pass trial mean algorithm.svariancepn( N, correction, x, stride ): calculate the variance of a single-precision floating-point strided array using a two-pass algorithm.svariancetk( N, correction, x, stride ): calculate the variance of a single-precision floating-point strided array using a one-pass textbook algorithm.svariancewd( N, correction, x, stride ): calculate the variance of a single-precision floating-point strided array using Welford's algorithm.svarianceyc( N, correction, x, stride ): calculate the variance of a single-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.variance( N, correction, x, stride ): calculate the variance of a strided array.variancech( N, correction, x, stride ): calculate the variance of a strided array using a one-pass trial mean algorithm.variancepn( N, correction, x, stride ): calculate the variance of a strided array using a two-pass algorithm.variancetk( N, correction, x, stride ): calculate the variance of a strided array using a one-pass textbook algorithm.variancewd( N, correction, x, stride ): calculate the variance of a strided array using Welford's algorithm.varianceyc( N, correction, x, stride ): calculate the variance of a strided array using a one-pass algorithm proposed by Youngs and Cramer.
Examples
var objectKeys = require( '@stdlib/utils/keys' );
var ns = require( '@stdlib/stats/base' );
console.log( objectKeys( ns ) );