|  | ||
|---|---|---|
| .. | ||
| docs | ||
| include/stdlib/strided/base | ||
| lib | ||
| src | ||
| manifest.json | ||
| package.json | ||
| README.md | ||
smap
Apply a unary function accepting and returning single-precision floating-point numbers to each element in a single-precision floating-point strided input array and assign each result to an element in a single-precision floating-point strided output array.
Usage
var smap = require( '@stdlib/strided/base/smap' );
smap( N, x, strideX, y, strideY, fcn )
Applies a unary function accepting and returning single-precision floating-point numbers to each element in a single-precision floating-point strided input array and assigns each result to an element in a single-precision floating-point strided output array.
var Float32Array = require( '@stdlib/array/float32' );
var absf = require( '@stdlib/math/base/special/absf' );
var x = new Float32Array( [ -2.0, 1.0, 3.0, -5.0, 4.0, 0.0, -1.0, -3.0 ] );
// Compute the absolute values in-place:
smap( x.length, x, 1, x, 1, absf );
// x => <Float32Array>[ 2.0, 1.0, 3.0, 5.0, 4.0, 0.0, 1.0, 3.0 ]
The function accepts the following arguments:
- N: number of indexed elements.
- x: input Float32Array.
- strideX: index increment for x.
- y: output Float32Array.
- strideY: index increment for y.
- fcn: function to apply.
The N and stride parameters determine which elements in x and y are accessed at runtime. For example, to index every other value in x and to index the first N elements of y in reverse order,
var Float32Array = require( '@stdlib/array/float32' );
var floor = require( '@stdlib/math/base/special/floor' );
var absf = require( '@stdlib/math/base/special/absf' );
var x = new Float32Array( [ -1.0, -2.0, -3.0, -4.0, -5.0, -6.0 ] );
var y = new Float32Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );
var N = floor( x.length / 2 );
smap( N, x, 2, y, -1, absf );
// y => <Float32Array>[ 5.0, 3.0, 1.0, 0.0, 0.0, 0.0 ]
Note that indexing is relative to the first index. To introduce an offset, use typed array views.
var Float32Array = require( '@stdlib/array/float32' );
var floor = require( '@stdlib/math/base/special/floor' );
var absf = require( '@stdlib/math/base/special/absf' );
// Initial arrays...
var x0 = new Float32Array( [ -1.0, -2.0, -3.0, -4.0, -5.0, -6.0 ] );
var y0 = new Float32Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );
// Create offset views...
var x1 = new Float32Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var y1 = new Float32Array( y0.buffer, y0.BYTES_PER_ELEMENT*3 ); // start at 4th element
var N = floor( x0.length / 2 );
smap( N, x1, -2, y1, 1, absf );
// y0 => <Float32Array>[ 0.0, 0.0, 0.0, 6.0, 4.0, 2.0 ]
smap.ndarray( N, x, strideX, offsetX, y, strideY, offsetY, fcn )
Applies a unary function accepting and returning single-precision floating-point numbers to each element in a single-precision floating-point strided input array and assigns each result to an element in a single-precision floating-point strided output array using alternative indexing semantics.
var Float32Array = require( '@stdlib/array/float32' );
var absf = require( '@stdlib/math/base/special/absf' );
var x = new Float32Array( [ -1.0, -2.0, -3.0, -4.0, -5.0 ] );
var y = new Float32Array( [ 0.0, 0.0, 0.0, 0.0, 0.0 ] );
smap.ndarray( x.length, x, 1, 0, y, 1, 0, absf );
// y => <Float32Array>[ 1.0, 2.0, 3.0, 4.0, 5.0 ]
The function accepts the following additional arguments:
- offsetX: starting index for x.
- offsetY: starting index for y.
While typed array views mandate a view offset based on the underlying buffer, the offsetX and offsetY parameters support indexing semantics based on starting indices. For example, to index every other value in x starting from the second value and to index the last N elements in y,
var Float32Array = require( '@stdlib/array/float32' );
var floor = require( '@stdlib/math/base/special/floor' );
var absf = require( '@stdlib/math/base/special/absf' );
var x = new Float32Array( [ -1.0, -2.0, -3.0, -4.0, -5.0, -6.0 ] );
var y = new Float32Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );
var N = floor( x.length / 2 );
smap.ndarray( N, x, 2, 1, y, -1, y.length-1, absf );
// y => <Float32Array>[ 0.0, 0.0, 0.0, 6.0, 4.0, 2.0 ]
Examples
var round = require( '@stdlib/math/base/special/round' );
var randu = require( '@stdlib/random/base/randu' );
var Float32Array = require( '@stdlib/array/float32' );
var smap = require( '@stdlib/strided/base/smap' );
function scale( x ) {
    return x * 10.0;
}
var x = new Float32Array( 10 );
var y = new Float32Array( 10 );
var i;
for ( i = 0; i < x.length; i++ ) {
    x[ i ] = round( (randu()*200.0) - 100.0 );
}
console.log( x );
console.log( y );
smap.ndarray( x.length, x, 1, 0, y, -1, y.length-1, scale );
console.log( y );
C APIs
Usage
#include "stdlib/strided/base/smap.h"
stdlib_strided_smap( N, *X, strideX, *Y, strideY, fcn )
Applies a unary function accepting and returning single-precision floating-point numbers to each element in a single-precision floating-point strided input array and assigns each result to an element in a single-precision floating-point strided output array.
#include <stdint.h>
static float scale( const float x ) {
    return x * 10.0f;
}
float X[] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 };
float Y[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
int64_t N = 6;
stdlib_strided_smap( N, X, 1, Y, 1, scale );
The function accepts the following arguments:
- N: [in] int64_tnumber of indexed elements.
- X: [in] float*input array.
- strideX [in] int64_tindex increment forX.
- Y: [out] float*output array.
- strideY: [in] int64_tindex increment forY.
- fcn: [in] float (*fcn)( float )unary function to apply.
void stdlib_strided_smap( const int64_t N, const float *X, const int64_t strideX, float *Y, const int64_t strideY, float (*fcn)( float ) );
Examples
#include "stdlib/strided/base/smap.h"
#include <stdint.h>
#include <stdio.h>
#include <inttypes.h>
// Define a callback:
static float scale( const float x ) {
    return x * 10.0;
}
int main() {
    // Create an input strided array:
    float X[] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 };
    // Create an output strided array:
    float Y[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
    // Specify the number of elements:
    int64_t N = 6;
    // Define the strides:
    int64_t strideX = 1;
    int64_t strideY = -1;
    // Apply the callback:
    stdlib_strided_smap( N, X, strideX, Y, strideY, scale );
    // Print the results:
    for ( int64_t i = 0; i < N; i++ ) {
        printf( "Y[ %"PRId64" ] = %f\n", i, Y[ i ] );
    }
}