|  | ||
|---|---|---|
| .. | ||
| docs | ||
| include/stdlib/math/strided/special | ||
| lib | ||
| src | ||
| binding.gyp | ||
| include.gypi | ||
| manifest.json | ||
| package.json | ||
| README.md | ||
sfloor
Round each element in a single-precision floating-point strided array toward negative infinity.
Usage
var sfloor = require( '@stdlib/math/strided/special/sfloor' );
sfloor( N, x, strideX, y, strideY )
Rounds each element in a single-precision floating-point strided array x toward negative infinity and assigns the results to elements in a single-precision floating-point strided array y.
var Float32Array = require( '@stdlib/array/float32' );
var x = new Float32Array( [ -1.1, 1.1, 3.8, 4.5, 5.9 ] );
// Perform operation in-place:
sfloor( x.length, x, 1, x, 1 );
// x => <Float32Array>[ -2.0, 1.0, 3.0, 4.0, 5.0 ]
The function accepts the following arguments:
- N: number of indexed elements.
- x: input Float32Array.
- strideX: index increment for x.
- y: output Float32Array.
- strideY: index increment for y.
The N and stride parameters determine which elements in x and y are accessed at runtime. For example, to index every other value in x and to index the first N elements of y in reverse order,
var Float32Array = require( '@stdlib/array/float32' );
var x = new Float32Array( [ -1.1, 1.1, 3.8, 4.5, 5.9, -6.7 ] );
var y = new Float32Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );
sfloor( 3, x, 2, y, -1 );
// y => <Float32Array>[ 5.0, 3.0, -2.0, 0.0, 0.0, 0.0 ]
Note that indexing is relative to the first index. To introduce an offset, use typed array views.
var Float32Array = require( '@stdlib/array/float32' );
// Initial arrays...
var x0 = new Float32Array( [ -1.1, 1.1, 3.8, 4.5, 5.9, -6.7 ] );
var y0 = new Float32Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );
// Create offset views...
var x1 = new Float32Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var y1 = new Float32Array( y0.buffer, y0.BYTES_PER_ELEMENT*3 ); // start at 4th element
sfloor( 3, x1, -2, y1, 1 );
// y0 => <Float32Array>[ 0.0, 0.0, 0.0, -7.0, 4.0, 1.0 ]
sfloor.ndarray( N, x, strideX, offsetX, y, strideY, offsetY )
Rounds each element in a single-precision floating-point strided array x toward negative infinity and assigns the results to elements in a single-precision floating-point strided array y using alternative indexing semantics.
var Float32Array = require( '@stdlib/array/float32' );
var x = new Float32Array( [ -1.1, 1.1, 3.8, 4.5, 5.9 ] );
var y = new Float32Array( [ 0.0, 0.0, 0.0, 0.0, 0.0 ] );
sfloor.ndarray( x.length, x, 1, 0, y, 1, 0 );
// y => <Float32Array>[ -2.0, 1.0, 3.0, 4.0, 5.0 ]
The function accepts the following additional arguments:
- offsetX: starting index for x.
- offsetY: starting index for y.
While typed array views mandate a view offset based on the underlying buffer, the offsetX and offsetY parameters support indexing semantics based on starting indices. For example, to index every other value in x starting from the second value and to index the last N elements in y,
var Float32Array = require( '@stdlib/array/float32' );
var x = new Float32Array( [ -1.1, 1.1, 3.8, 4.5, 5.9, -6.7 ] );
var y = new Float32Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );
sfloor.ndarray( 3, x, 2, 1, y, -1, y.length-1 );
// y => <Float32Array>[ 0.0, 0.0, 0.0, -7.0, 4.0, 1.0 ]
Examples
var uniform = require( '@stdlib/random/base/uniform' );
var Float32Array = require( '@stdlib/array/float32' );
var sfloor = require( '@stdlib/math/strided/special/sfloor' );
var x = new Float32Array( 10 );
var y = new Float32Array( 10 );
var i;
for ( i = 0; i < x.length; i++ ) {
    x[ i ] = uniform( -10.0, 10.0 );
}
console.log( x );
console.log( y );
sfloor.ndarray( x.length, x, 1, 0, y, -1, y.length-1 );
console.log( y );
C APIs
Usage
#include "stdlib/math/strided/special/sfloor.h"
stdlib_strided_sfloor( N, *X, strideX, *Y, strideY )
Rounds each element in a single-precision floating-point strided array X toward negative infinity and assigns the results to elements in a single-precision floating-point strided array Y.
#include <stdint.h>
float X[] = { -1.5, 2.3, -3.9, 4.2, -5.0, -6.0, 7.9, -8.1 };
float Y[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
int64_t N = 4;
stdlib_strided_sfloor( N, X, 2, Y, 2 );
The function accepts the following arguments:
- N: [in] int64_tnumber of indexed elements.
- X: [in] float*input array.
- strideX: [in] int64_tindex increment forX.
- Y: [out] float*output array.
- strideY: [in] int64_tindex increment forY.
void stdlib_strided_sfloor( const int64_t N, const float *X, const int64_t strideX, float *Y, const int64_t strideY );
Examples
#include "stdlib/math/strided/special/sfloor.h"
#include <stdint.h>
#include <stdio.h>
int main() {
    // Create an input strided array:
    float X[] = { -1.5, 2.3, -3.9, 4.2, -5.0, -6.0, 7.9, -8.1 };
    // Create an output strided array:
    float Y[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
    // Specify the number of elements:
    int64_t N = 4;
    // Specify the stride lengths:
    int64_t strideX = 2;
    int64_t strideY = 2;
    // Compute the results:
    stdlib_strided_sfloor( N, X, strideX, Y, strideY );
    // Print the results:
    for ( int i = 0; i < 8; i++ ) {
        printf( "Y[ %i ] = %f\n", i, Y[ i ] );
    }
}