|
|
||
|---|---|---|
| .. | ||
| arcsine | ||
| bernoulli | ||
| beta | ||
| betaprime | ||
| binomial | ||
| box-muller | ||
| cauchy | ||
| chi | ||
| chisquare | ||
| cosine | ||
| discrete-uniform | ||
| docs/types | ||
| erlang | ||
| exponential | ||
| f | ||
| frechet | ||
| gamma | ||
| geometric | ||
| gumbel | ||
| hypergeometric | ||
| improved-ziggurat | ||
| invgamma | ||
| kumaraswamy | ||
| laplace | ||
| levy | ||
| lib | ||
| logistic | ||
| lognormal | ||
| minstd | ||
| minstd-shuffle | ||
| mt19937 | ||
| negative-binomial | ||
| normal | ||
| pareto-type1 | ||
| poisson | ||
| randi | ||
| randn | ||
| randu | ||
| rayleigh | ||
| t | ||
| triangular | ||
| uniform | ||
| weibull | ||
| package.json | ||
| README.md | ||
Pseudorandom Number Generator Iterators
Standard library pseudorandom number generator (PRNG) iterators.
Usage
var ns = require( '@stdlib/random/iter' );
ns
Standard library pseudorandom number generator (PRNG) iterators.
var iterators = ns;
// returns {...}
The namespace contains the following functions for creating iterator protocol-compliant iterators:
arcsine( a, b[, options] ): create an iterator for generating pseudorandom numbers drawn from an arcsine distribution.bernoulli( p[, options] ): create an iterator for generating pseudorandom numbers drawn from a Bernoulli distribution.beta( alpha, beta[, options] ): create an iterator for generating pseudorandom numbers drawn from a beta distribution.betaprime( alpha, beta[, options] ): create an iterator for generating pseudorandom numbers drawn from a beta prime distribution.binomial( n, p[, options] ): create an iterator for generating pseudorandom numbers drawn from a binomial distribution.boxMuller( [options] ): create an iterator for generating pseudorandom numbers drawn from a standard normal distribution using the Box-Muller transform.cauchy( x0, gamma[, options] ): create an iterator for generating pseudorandom numbers drawn from a Cauchy distribution.chi( k[, options] ): create an iterator for generating pseudorandom numbers drawn from a chi distribution.chisquare( k[, options] ): create an iterator for generating pseudorandom numbers drawn from a chi-square distribution.cosine( mu, s[, options] ): create an iterator for generating pseudorandom numbers drawn from a raised cosine distribution.discreteUniform( a, b[, options] ): create an iterator for generating pseudorandom numbers drawn from a discrete uniform distribution.erlang( k, lambda[, options] ): create an iterator for generating pseudorandom numbers drawn from an Erlang distribution.exponential( lambda[, options] ): create an iterator for generating pseudorandom numbers drawn from an exponential distribution.f( d1, d2[, options] ): create an iterator for generating pseudorandom numbers drawn from an F distribution.frechet( alpha, s, m[, options] ): create an iterator for generating pseudorandom numbers drawn from a Fréchet distribution.gamma( alpha, beta[, options] ): create an iterator for generating pseudorandom numbers drawn from a gamma distribution.geometric( p[, options] ): create an iterator for generating pseudorandom numbers drawn from a geometric distribution.gumbel( mu, beta[, options] ): create an iterator for generating pseudorandom numbers drawn from a Gumbel distribution.hypergeometric( N, K, n[, options] ): create an iterator for generating pseudorandom numbers drawn from a hypergeometric distribution.improvedZiggurat( [options] ): create an iterator for generating pseudorandom numbers drawn from a standard normal distribution using the Improved Ziggurat algorithm.invgamma( alpha, beta[, options] ): create an iterator for generating pseudorandom numbers drawn from an inverse gamma distribution.kumaraswamy( a, b[, options] ): create an iterator for generating pseudorandom numbers drawn from a Kumaraswamy's double bounded distribution.laplace( mu, b[, options] ): create an iterator for generating pseudorandom numbers drawn from a Laplace (double exponential) distribution.levy( mu, c[, options] ): create an iterator for generating pseudorandom numbers drawn from a Lévy distribution.logistic( mu, s[, options] ): create an iterator for generating pseudorandom numbers drawn from a logistic distribution.lognormal( mu, sigma[, options] ): create an iterator for generating pseudorandom numbers drawn from a lognormal distribution.minstdShuffle( [options] ): create an iterator for a linear congruential pseudorandom number generator (LCG) whose output is shuffled.minstd( [options] ): create an iterator for a linear congruential pseudorandom number generator (LCG) based on Park and Miller.mt19937( [options] ): create an iterator for a 32-bit Mersenne Twister pseudorandom number generator.negativeBinomial( r, p[, options] ): create an iterator for generating pseudorandom numbers drawn from a negative binomial distribution.normal( mu, sigma[, options] ): create an iterator for generating pseudorandom numbers drawn from a normal distribution.pareto1( alpha, beta[, options] ): create an iterator for generating pseudorandom numbers drawn from a Pareto (Type I) distribution.poisson( lambda[, options] ): create an iterator for generating pseudorandom numbers drawn from a Poisson distribution.randi( [options] ): create an iterator for generating pseudorandom numbers having integer values.randn( [options] ): create an iterator for generating pseudorandom numbers drawn from a standard normal distribution.randu( [options] ): create an iterator for generating uniformly distributed pseudorandom numbers between0and1.rayleigh( sigma[, options] ): create an iterator for generating pseudorandom numbers drawn from a Rayleigh distribution.t( v[, options] ): create an iterator for generating pseudorandom numbers drawn from a Student's t distribution.triangular( a, b, c[, options] ): create an iterator for generating pseudorandom numbers drawn from a triangular distribution.uniform( a, b[, options] ): create an iterator for generating pseudorandom numbers drawn from a continuous uniform distribution.weibull( k, lambda[, options] ): create an iterator for generating pseudorandom numbers drawn from a Weibull distribution.
Examples
var objectKeys = require( '@stdlib/utils/keys' );
var ns = require( '@stdlib/random/iter' );
console.log( objectKeys( ns ) );