|
|
||
|---|---|---|
| .. | ||
| docs | ||
| lib | ||
| package.json | ||
| README.md | ||
Binomial Test
Exact test for the success probability in a Bernoulli experiment.
Usage
var binomialTest = require( '@stdlib/stats/binomial-test' );
binomialTest( x[, n][, opts] )
When supplied nonnegative integers x (number of successes in a Bernoulli experiment) and n (total number of trials), the function computes an exact test for the success probability in a Bernoulli experiment. Alternatively, x may be a two-element array containing the number of successes and failures, respectively.
var out = binomialTest( 550, 1000 );
/* returns
{
'rejected': true,
'pValue': ~0.001,
'statistic': 0.55,
'ci': [ ~0.519, ~0.581 ],
// ...
}
*/
out = binomialTest( [ 550, 450 ] );
/* returns
{
'rejected': true,
'pValue': ~0.001,
'statistic': 0.55,
'ci': [ ~0.519, ~0.581 ],
// ...
}
*/
The returned object comes with a .print() method which when invoked will print a formatted output of the results of the hypothesis test. print accepts a digits option that controls the number of decimal digits displayed for the outputs and a decision option, which when set to false will hide the test decision.
console.log( out.print() );
/* e.g., =>
Exact binomial test
Alternative hypothesis: True correlation coefficient is not equal to 0.5
pValue: 0.0017
statistic: 0.55
95% confidence interval: [0.5186,0.5811]
Test Decision: Reject null in favor of alternative at 5% significance level
*/
The function accepts the following options:
- alpha:
numberin the interval[0,1]giving the significance level of the hypothesis test. Default:0.05. - alternative: Either
two-sided,lessorgreater. Indicates whether the alternative hypothesis is that the true ratio of variances is greater than one (greater), smaller than one (less), or that the variances are the same (two-sided). Default:two-sided. - p: success
probabilityunder the null hypothesis. Default:0.5.
By default, the hypothesis test is carried out at a significance level of 0.05. To choose a different significance level, set the alpha option.
var out = binomialTest( 59, 100, {
'alpha': 0.1
});
/* returns
{
'rejected': true,
'pValue': ~0.089,
'statistic': 0.59,
'ci': [ ~0.487, ~0.687 ],
// ...
}
*/
By default, a two-sided test is performed. To perform either of the one-sided tests, set the alternative option to less or greater.
out = binomialTest( 550, 1000, {
'alternative': 'greater'
});
table = out.print();
/** e.g., returns
Exact binomial test
Alternative hypothesis: True correlation coefficient is greater than 0.5
pValue: 0.0009
statistic: 0.55
95% confidence interval: [0.5235,1]
Test Decision: Reject null in favor of alternative at 5% significance level
*/
out = binomialTest( 550, 1000, {
'alternative': 'less'
});
table = out.print();
/* e.g., returns
Exact binomial test
Alternative hypothesis: True correlation coefficient is less than 0.5
pValue: 0.9993
statistic: 0.55
95% confidence interval: [0,0.5762]
Test Decision: Fail to reject null in favor of alternative at 5% significance level
*/
To test whether the success probability in the population is equal to some other value than 0.5, set the p option.
var out = binomialTest( 23, 100, {
'p': 0.2
});
/* returns
{
'rejected': false,
'pValue': ~0.453,
'statistic': 0.23,
'ci': [ ~0.152, ~0.325 ],
// ...
}
*/
var table = out.print();
/* e.g., returns
Exact binomial test
Alternative hypothesis: True correlation coefficient is not equal to 0.2
pValue: 0.4534
statistic: 0.23
95% confidence interval: [0.1517,0.3249]
Test Decision: Fail to reject null in favor of alternative at 5% significance level
*/
Examples
var binomialTest = require( '@stdlib/stats/binomial-test' );
var out = binomialTest( 682, 925 );
/* returns
{
'rejected': true,
'pValue': ~3.544e-49,
'statistic': 0.737,
'ci': [ ~0.708, ~0.765 ],
// ...
}
*/
out = binomialTest( [ 682, 925 - 682 ] );
/* returns
{
'rejected': true,
'pValue': ~3.544e-49,
'statistic': 0.737,
'ci': [ ~0.708, ~0.765 ],
// ...
}
*/
out = binomialTest( 682, 925, {
'p': 0.75,
'alpha': 0.05
});
/* returns
{
'rejected': false,
'pValue': ~0.382
'statistic': 0.737,
'ci': [ ~0.708, ~0.765 ],
// ...
}
*/
out = binomialTest( 21, 40, {
'p': 0.4,
'alternative': 'greater'
});
/* returns
{
'rejected': false,
'pValue': ~0.382,
'statistic': 0.737,
'ci': [ ~0.385, 1.0 ],
// ...
}
*/