|
|
||
|---|---|---|
| .. | ||
| docs | ||
| lib | ||
| package.json | ||
| README.md | ||
incrcovariance
Compute an unbiased sample covariance incrementally.
For unknown population means, the unbiased sample covariance is defined as
For known population means, the unbiased sample covariance is defined as
Usage
var incrcovariance = require( '@stdlib/stats/incr/covariance' );
incrcovariance( [mx, my] )
Returns an accumulator function which incrementally computes an unbiased sample covariance.
var accumulator = incrcovariance();
If the means are already known, provide mx and my arguments.
var accumulator = incrcovariance( 3.0, -5.5 );
accumulator( [x, y] )
If provided input values x and y, the accumulator function returns an updated unbiased sample covariance. If not provided input values x and y, the accumulator function returns the current unbiased sample covariance.
var accumulator = incrcovariance();
var v = accumulator( 2.0, 1.0 );
// returns 0.0
v = accumulator( 1.0, -5.0 );
// returns 3.0
v = accumulator( 3.0, 3.14 );
// returns 4.07
v = accumulator();
// returns 4.07
Notes
- Input values are not type checked. If provided
NaNor a value which, when used in computations, results inNaN, the accumulated value isNaNfor all future invocations. If non-numeric inputs are possible, you are advised to type check and handle accordingly before passing the value to the accumulator function.
Examples
var randu = require( '@stdlib/random/base/randu' );
var incrcovariance = require( '@stdlib/stats/incr/covariance' );
var accumulator;
var x;
var y;
var i;
// Initialize an accumulator:
accumulator = incrcovariance();
// For each simulated datum, update the unbiased sample covariance...
for ( i = 0; i < 100; i++ ) {
x = randu() * 100.0;
y = randu() * 100.0;
accumulator( x, y );
}
console.log( accumulator() );