…
|
||
---|---|---|
.. | ||
docs | ||
lib | ||
package.json | ||
README.md |
incrmse
Compute the mean squared error (MSE) incrementally.
The mean squared error is defined as
Usage
var incrmse = require( '@stdlib/stats/incr/mse' );
incrmse()
Returns an accumulator function
which incrementally computes the mean squared error.
var accumulator = incrmse();
accumulator( [x, y] )
If provided input values x
and y
, the accumulator function returns an updated mean squared error. If not provided input values x
and y
, the accumulator function returns the current mean squared error.
var accumulator = incrmse();
var m = accumulator( 2.0, 3.0 );
// returns 1.0
m = accumulator( -1.0, -4.0 );
// returns 5.0
m = accumulator( -3.0, 5.0 );
// returns ~24.67
m = accumulator();
// returns ~24.67
Notes
- Input values are not type checked. If provided
NaN
or a value which, when used in computations, results inNaN
, the accumulated value isNaN
for all future invocations. If non-numeric inputs are possible, you are advised to type check and handle accordingly before passing the value to the accumulator function.
Examples
var randu = require( '@stdlib/random/base/randu' );
var incrmse = require( '@stdlib/stats/incr/mse' );
var accumulator;
var v1;
var v2;
var i;
// Initialize an accumulator:
accumulator = incrmse();
// For each simulated datum, update the mean squared error...
for ( i = 0; i < 100; i++ ) {
v1 = ( randu()*100.0 ) - 50.0;
v2 = ( randu()*100.0 ) - 50.0;
accumulator( v1, v2 );
}
console.log( accumulator() );