time-to-botec/squiggle/node_modules/@stdlib/random/sample/lib/vose.js
NunoSempere b6addc7f05 feat: add the node modules
Necessary in order to clearly see the squiggle hotwiring.
2022-12-03 12:44:49 +00:00

107 lines
2.4 KiB
JavaScript
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/**
* @license Apache-2.0
*
* Copyright (c) 2018 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
'use strict';
// MODULES //
var floor = require( '@stdlib/math/base/special/floor' );
// MAIN //
/**
* Samples with replacement and non-uniform probabilities using Vose's [alias method][alias-method].
*
* ## References
*
* - Vose, Michael D. 1991. "A linear algorithm for generating random numbers with a given distribution." _IEEE Transactions on Software Engineering_ 17 (9): 97275. doi:[10.1109/32.92917][@vose:1991].
*
* [alias-method]: http://keithschwarz.com/darts-dice-coins/
* [@vose:1991]: https://doi.org/10.1109/32.92917
*
*
* @private
* @param {ArrayLike} x - array-like object from which to sample
* @param {NonNegativeInteger} size - sample size
* @param {Function} rand - PRNG for generating uniformly distributed numbers
* @param {ProbabilityArray} probabilities - element probabilities
* @returns {Array} sample
*/
function vose( x, size, rand, probabilities ) {
var small;
var large;
var probs;
var alias;
var out;
var N;
var p;
var g;
var i;
var l;
probs = probabilities.slice();
N = x.length;
small = [];
large = [];
for ( i = 0; i < N; i++ ) {
probs[ i ] *= N;
if ( probs[ i ] < 1.0 ) {
small.push( i );
} else {
large.push( i );
}
}
alias = new Array( N );
p = new Array( N );
while ( small.length !== 0 && large.length !== 0 ) {
l = small.shift();
g = large.shift();
p[ l ] = probs[ l ];
alias[ l ] = g;
probs[ g ] = probs[ g ] + probs[ l ] - 1.0;
if ( probs[ g ] < 1.0 ) {
small.push( g );
} else {
large.push( g );
}
}
for ( i = 0; i < large.length; i++ ) {
p[ large[ i ] ] = 1.0;
}
for ( i = 0; i < small.length; i++ ) {
p[ small[ i ] ] = 1.0;
}
out = new Array( size );
for ( i = 0; i < size; i++ ) {
l = floor( N*rand() );
if ( rand() < p[ l ] ) {
out[ i ] = x[ l ];
} else {
out[ i ] = x[ alias[ l ] ];
}
}
return out;
}
// EXPORTS //
module.exports = vose;