|
||
---|---|---|
.. | ||
docs | ||
lib | ||
package.json | ||
README.md |
Correlation Test
Compute a Pearson product-moment correlation test between paired samples.
Usage
var pcorrtest = require( '@stdlib/stats/pcorrtest' );
pcorrtest( x, y[, opts] )
By default, the function performs a t-test for the null hypothesis that the paired data in arrays or typed arrays x
and y
have a Pearson correlation coefficient of zero.
var x = [ 0.7, -1.6, -0.2, -1.2, -0.1, 3.4, 3.7, 0.8, 0.0, 2.0 ];
var y = [ 1.9, 0.8, 1.1, 0.1, -0.1, 4.4, 5.5, 1.6, 4.6, 3.4 ];
var out = pcorrtest( x, y );
/* e.g., returns
{
'alpha': 0.05,
'rejected': true,
'pValue': ~0.006,
'statistic': ~3.709,
'ci': [ ~0.332, ~0.95 ],
'nullValue': 0,
'pcorr': ~0.795,
// ...
}
*/
The returned object comes with a .print()
method which when invoked will print a formatted output of the results of the hypothesis test. print
accepts a digits
option that controls the number of decimal digits displayed for the outputs and a decision
option, which when set to false
will hide the test decision.
console.log( out.print() );
/* e.g., =>
t-test for Pearson correlation coefficient
Alternative hypothesis: True correlation coefficient is not equal to 0
pValue: 0.006
statistic: 3.709
95% confidence interval: [0.3315,0.9494]
Test Decision: Reject null in favor of alternative at 5% significance level
*/
The function accepts the following options
:
- alpha:
number
in the interval[0,1]
giving the significance level of the hypothesis test. Default:0.05
. - alternative: Either
two-sided
,less
orgreater
. Indicates whether the alternative hypothesis is thatx
has a larger mean thany
(greater
),x
has a smaller mean thany
(less
) or the means are the same (two-sided
). Default:two-sided
. - rho:
number
denoting the correlation between thex
andy
variables under the null hypothesis. Default:0
.
By default, the hypothesis test is carried out at a significance level of 0.05
. To choose a different significance level, set the alpha
option.
var x = [ 0.7, -1.6, -0.2, -1.2, -0.1, 3.4, 3.7, 0.8, 0.0, 2.0 ];
var y = [ 1.9, 0.8, 1.1, 0.1, -0.1, 4.4, 5.5, 1.6, 4.6, 3.4 ];
var out = pcorrtest( x, y, {
'alpha': 0.1
});
var table = out.print();
/* e.g., returns
t-test for Pearson correlation coefficient
Alternative hypothesis: True correlation coefficient is not equal to 0
pValue: 0.006
statistic: 3.709
90% confidence interval: [0.433,0.9363]
Test Decision: Reject null in favor of alternative at 10% significance level
*/
By default, a two-sided test is performed. To perform either of the one-sided tests, set the alternative
option to less
or greater
.
var x = [ 0.7, -1.6, -0.2, -1.2, -0.1, 3.4, 3.7, 0.8, 0.0, 2.0 ];
var y = [ 1.9, 0.8, 1.1, 0.1, -0.1, 4.4, 5.5, 1.6, 4.6, 3.4 ];
var out = pcorrtest( x, y, {
'alternative': 'less'
});
var table = out.print();
/* e.g., returns
t-test for Pearson correlation coefficient
Alternative hypothesis: True correlation coefficient is less than 0
pValue: 0.997
statistic: 3.709
95% confidence interval: [-1,0.9363]
Test Decision: Fail to reject null in favor of alternative at 5% significance level
*/
out = pcorrtest( x, y, {
'alternative': 'greater'
});
table = out.print();
/* e.g., returns
t-test for Pearson correlation coefficient
Alternative hypothesis: True correlation coefficient is greater than 0
pValue: 0.003
statistic: 3.709
95% confidence interval: [0.433,1]
Test Decision: Reject null in favor of alternative at 5% significance level
*/
To test whether the correlation coefficient is equal to some other value than 0
, set the rho
option. Hypotheses tests for correlation coefficients besides zero are carried out using the Fisher z-transformation.
var x = [ 0.7, -1.6, -0.2, -1.2, -0.1, 3.4, 3.7, 0.8, 0.0, 2.0 ];
var y = [ 1.9, 0.8, 1.1, 0.1, -0.1, 4.4, 5.5, 1.6, 4.6, 3.4 ];
var out = pcorrtest( x, y, {
'rho': 0.8
});
/* e.g., returns
{
'alpha': 0.05,
'rejected': false,
'pValue': ~0.972,
'statistic': ~-0.035,
'ci': [ ~0.332, ~0.949 ],
'nullValue': 0.8,
'pcorr': ~0.795,
// ...
}
*/
var table = out.print();
/* e.g., returns
Fisher's z transform test for Pearson correlation coefficient
Alternative hypothesis: True correlation coefficient is not equal to 0.8
pValue: 0.972
statistic: -0.0351
95% confidence interval: [0.3315,0.9494]
Test Decision: Fail to reject null in favor of alternative at 5% significance level
*/
Examples
var rnorm = require( '@stdlib/random/base/normal' );
var sqrt = require( '@stdlib/math/base/special/sqrt' );
var pcorrtest = require( '@stdlib/stats/pcorrtest' );
var table;
var out;
var rho;
var x;
var y;
var i;
rho = 0.5;
x = new Array( 300 );
y = new Array( 300 );
for ( i = 0; i < 300; i++ ) {
x[ i ] = rnorm( 0.0, 1.0 );
y[ i ] = ( rho * x[ i ] ) + rnorm( 0.0, sqrt( 1.0 - (rho*rho) ) );
}
out = pcorrtest( x, y );
table = out.print();
console.log( table );
out = pcorrtest( x, y, {
'rho': 0.5
});
table = out.print();
console.log( table );