|
||
---|---|---|
.. | ||
docs | ||
lib | ||
package.json | ||
README.md |
incrmme
Compute a moving mean error (ME) incrementally.
For a window of size W
, the mean error is defined as
Usage
var incrmme = require( '@stdlib/stats/incr/mme' );
incrmme( window )
Returns an accumulator function
which incrementally computes a moving mean error. The window
parameter defines the number of values over which to compute the moving mean error.
var accumulator = incrmme( 3 );
accumulator( [x, y] )
If provided input values x
and y
, the accumulator function returns an updated mean error. If not provided input values x
and y
, the accumulator function returns the current mean error.
var accumulator = incrmme( 3 );
var m = accumulator();
// returns null
// Fill the window...
m = accumulator( 2.0, 3.0 ); // [(2.0,3.0)]
// returns 1.0
m = accumulator( -1.0, 4.0 ); // [(2.0,3.0), (-1.0,4.0)]
// returns 3.0
m = accumulator( 3.0, 9.0 ); // [(2.0,3.0), (-1.0,4.0), (3.0,9.0)]
// returns 4.0
// Window begins sliding...
m = accumulator( -7.0, 3.0 ); // [(-1.0,4.0), (3.0,9.0), (-7.0,3.0)]
// returns 7.0
m = accumulator( -5.0, -3.0 ); // [(3.0,9.0), (-7.0,3.0), (-5.0,-3.0)]
// returns 6.0
m = accumulator();
// returns 6.0
Notes
- Input values are not type checked. If provided
NaN
or a value which, when used in computations, results inNaN
, the accumulated value isNaN
for at leastW-1
future invocations. If non-numeric inputs are possible, you are advised to type check and handle accordingly before passing the value to the accumulator function. - As
W
(x,y) pairs are needed to fill the window buffer, the firstW-1
returned values are calculated from smaller sample sizes. Until the window is full, each returned value is calculated from all provided values. - Be careful when interpreting the mean error as errors can cancel. This stated, that errors can cancel makes the mean error suitable for measuring the bias in forecasts.
- Warning: the mean error is scale-dependent and, thus, the measure should not be used to make comparisons between datasets having different scales.
Examples
var randu = require( '@stdlib/random/base/randu' );
var incrmme = require( '@stdlib/stats/incr/mme' );
var accumulator;
var v1;
var v2;
var i;
// Initialize an accumulator:
accumulator = incrmme( 5 );
// For each simulated datum, update the moving mean error...
for ( i = 0; i < 100; i++ ) {
v1 = ( randu()*100.0 ) - 50.0;
v2 = ( randu()*100.0 ) - 50.0;
accumulator( v1, v2 );
}
console.log( accumulator() );