time-to-botec/js/node_modules/@stdlib/stats/incr/variance/lib/main.js
NunoSempere b6addc7f05 feat: add the node modules
Necessary in order to clearly see the squiggle hotwiring.
2022-12-03 12:44:49 +00:00

163 lines
4.4 KiB
JavaScript
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/**
* @license Apache-2.0
*
* Copyright (c) 2018 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
'use strict';
// MODULES //
var isNumber = require( '@stdlib/assert/is-number' ).isPrimitive;
var isnan = require( '@stdlib/math/base/assert/is-nan' );
// MAIN //
/**
* Returns an accumulator function which incrementally computes an unbiased sample variance.
*
* ## Method
*
* - This implementation uses Welford's algorithm for efficient computation, which can be derived as follows. Let
*
* ```tex
* \begin{align*}
* S_n &= n \sigma_n^2 \\
* &= \sum_{i=1}^{n} (x_i - \mu_n)^2 \\
* &= \biggl(\sum_{i=1}^{n} x_i^2 \biggr) - n\mu_n^2
* \end{align*}
* ```
*
* Accordingly,
*
* ```tex
* \begin{align*}
* S_n - S_{n-1} &= \sum_{i=1}^{n} x_i^2 - n\mu_n^2 - \sum_{i=1}^{n-1} x_i^2 + (n-1)\mu_{n-1}^2 \\
* &= x_n^2 - n\mu_n^2 + (n-1)\mu_{n-1}^2 \\
* &= x_n^2 - \mu_{n-1}^2 + n(\mu_{n-1}^2 - \mu_n^2) \\
* &= x_n^2 - \mu_{n-1}^2 + n(\mu_{n-1} - \mu_n)(\mu_{n-1} + \mu_n) \\
* &= x_n^2 - \mu_{n-1}^2 + (\mu_{n-1} - x_n)(\mu_{n-1} + \mu_n) \\
* &= x_n^2 - \mu_{n-1}^2 + \mu_{n-1}^2 - x_n\mu_n - x_n\mu_{n-1} + \mu_n\mu_{n-1} \\
* &= x_n^2 - x_n\mu_n - x_n\mu_{n-1} + \mu_n\mu_{n-1} \\
* &= (x_n - \mu_{n-1})(x_n - \mu_n) \\
* &= S_{n-1} + (x_n - \mu_{n-1})(x_n - \mu_n)
* \end{align*}
* ```
*
* where we use the identity
*
* ```tex
* x_n - \mu_{n-1} = n (\mu_n - \mu_{n-1})
* ```
*
* ## References
*
* - Welford, B. P. 1962. "Note on a Method for Calculating Corrected Sums of Squares and Products." _Technometrics_ 4 (3). Taylor & Francis: 41920. doi:[10.1080/00401706.1962.10490022](https://doi.org/10.1080/00401706.1962.10490022).
* - van Reeken, A. J. 1968. "Letters to the Editor: Dealing with Neely's Algorithms." _Communications of the ACM_ 11 (3): 14950. doi:[10.1145/362929.362961](https://doi.org/10.1145/362929.362961).
*
* @param {number} [mean] - mean value
* @throws {TypeError} must provide a number primitive
* @returns {Function} accumulator function
*
* @example
* var accumulator = incrvariance();
*
* var s2 = accumulator();
* // returns null
*
* s2 = accumulator( 2.0 );
* // returns 0.0
*
* s2 = accumulator( -5.0 );
* // returns 24.5
*
* s2 = accumulator();
* // returns 24.5
*
* @example
* var accumulator = incrvariance( 3.14 );
*/
function incrvariance( mean ) {
var delta;
var mu;
var M2;
var N;
M2 = 0.0;
N = 0;
if ( arguments.length ) {
if ( !isNumber( mean ) ) {
throw new TypeError( 'invalid argument. Must provide a number primitive. Value: `' + mean + '`.' );
}
mu = mean;
return accumulator2;
}
mu = 0.0;
return accumulator1;
/**
* If provided a value, the accumulator function returns an updated unbiased sample variance. If not provided a value, the accumulator function returns the current unbiased sample variance.
*
* @private
* @param {number} [x] - new value
* @returns {(number|null)} unbiased sample variance or null
*/
function accumulator1( x ) {
if ( arguments.length === 0 ) {
if ( N === 0 ) {
return null;
}
if ( N === 1 ) {
return ( isnan( M2 ) ) ? NaN : 0.0;
}
return M2 / (N-1);
}
N += 1;
delta = x - mu;
mu += delta / N;
M2 += delta * ( x - mu );
if ( N < 2 ) {
return ( isnan( M2 ) ) ? NaN : 0.0;
}
return M2 / (N-1);
}
/**
* If provided a value, the accumulator function returns an updated unbiased sample variance. If not provided a value, the accumulator function returns the current unbiased sample variance.
*
* @private
* @param {number} [x] - new value
* @returns {(number|null)} unbiased sample variance or null
*/
function accumulator2( x ) {
if ( arguments.length === 0 ) {
if ( N === 0 ) {
return null;
}
return M2 / N;
}
N += 1;
delta = x - mu;
M2 += delta * delta;
return M2 / N;
}
}
// EXPORTS //
module.exports = incrvariance;