|
||
---|---|---|
.. | ||
docs | ||
lib | ||
package.json | ||
README.md |
incrmae
Compute the mean absolute error (MAE) incrementally.
The mean absolute error is defined as
Usage
var incrmae = require( '@stdlib/stats/incr/mae' );
incrmae()
Returns an accumulator function
which incrementally computes the mean absolute error.
var accumulator = incrmae();
accumulator( [x, y] )
If provided input values x
and y
, the accumulator function returns an updated mean absolute error. If not provided input values x
and y
, the accumulator function returns the current mean absolute error.
var accumulator = incrmae();
var m = accumulator( 2.0, 3.0 );
// returns 1.0
m = accumulator( -1.0, -4.0 );
// returns 2.0
m = accumulator( -3.0, 5.0 );
// returns 4.0
m = accumulator();
// returns 4.0
Notes
- Input values are not type checked. If provided
NaN
or a value which, when used in computations, results inNaN
, the accumulated value isNaN
for all future invocations. If non-numeric inputs are possible, you are advised to type check and handle accordingly before passing the value to the accumulator function. - Warning: the mean absolute error is scale-dependent and, thus, the measure should not be used to make comparisons between datasets having different scales.
Examples
var randu = require( '@stdlib/random/base/randu' );
var incrmae = require( '@stdlib/stats/incr/mae' );
var accumulator;
var v1;
var v2;
var i;
// Initialize an accumulator:
accumulator = incrmae();
// For each simulated datum, update the mean absolute error...
for ( i = 0; i < 100; i++ ) {
v1 = ( randu()*100.0 ) - 50.0;
v2 = ( randu()*100.0 ) - 50.0;
accumulator( v1, v2 );
}
console.log( accumulator() );