|
||
---|---|---|
.. | ||
docs | ||
lib | ||
package.json | ||
README.md |
Logarithm of Probability Density Function
Gumbel distribution logarithm of probability density function (PDF).
The probability density function (PDF) for a Gumbel random variable is
where mu
is the location parameter and beta > 0
is the scale parameter.
Usage
var logpdf = require( '@stdlib/stats/base/dists/gumbel/logpdf' );
logpdf( x, mu, beta )
Evaluates the logarithm of the probability density function (PDF) for a Gumbel distribution with parameters mu
(location parameter) and beta > 0
(scale parameter).
var y = logpdf( 0.0, 0.0, 2.0 );
// returns ~-1.693
y = logpdf( 0.0, 0.0, 1.0 );
// returns ~-1
y = logpdf( 1.0, 3.0, 2.0 );
// returns ~-2.411
If provided NaN
as any argument, the function returns NaN
.
var y = logpdf( NaN, 0.0, 1.0 );
// returns NaN
y = logpdf( 0.0, NaN, 1.0 );
// returns NaN
y = logpdf( 0.0, 0.0, NaN );
// returns NaN
If provided beta <= 0
, the function returns NaN
.
var y = logpdf( 2.0, 0.0, -1.0 );
// returns NaN
y = logpdf( 2.0, 8.0, 0.0 );
// returns NaN
logpdf.factory( mu, beta )
Returns a function
for evaluating the logarithm of the PDF (PDF) for a Gumbel distribution with parameters mu
(location parameter) and beta > 0
(scale parameter).
var mylogpdf = logpdf.factory( 10.0, 2.0 );
y = mylogpdf( 10.0 );
// returns ~-1.693
y = mylogpdf( 12.0 );
// returns ~-2.061
Notes
- In virtually all cases, using the
logpdf
orlogcdf
functions is preferable to manually computing the logarithm of thepdf
orcdf
, respectively, since the latter is prone to overflow and underflow.
Examples
var randu = require( '@stdlib/random/base/randu' );
var logpdf = require( '@stdlib/stats/base/dists/gumbel/logpdf' );
var beta;
var mu;
var x;
var y;
var i;
for ( i = 0; i < 10; i++ ) {
x = randu() * 10.0;
mu = randu() * 10.0;
beta = randu() * 10.0;
y = logpdf( x, mu, beta );
console.log( 'x: %d, µ: %d, β: %d, ln(f(x;µ,β)): %d', x, mu, beta, y );
}