time-to-botec/js/node_modules/@stdlib/random/base/hypergeometric/lib/hin.js
NunoSempere b6addc7f05 feat: add the node modules
Necessary in order to clearly see the squiggle hotwiring.
2022-12-03 12:44:49 +00:00

72 lines
2.1 KiB
JavaScript
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/**
* @license Apache-2.0
*
* Copyright (c) 2018 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
'use strict';
// MODULES //
var factorial = require( '@stdlib/math/base/special/factorial' );
// MAIN //
/**
* Returns a pseudorandom number drawn from a hypergeometric distribution using the HIN algorithm, which is based on an inverse transformation method.
*
* ## References
*
* - Fishman, George S. 1973. _Concepts and methods in discrete event digital simulation_. A Wiley-Interscience Publication. New York, NY, USA: Wiley.
* - Kachitvichyanukul, Voratas., and Burce Schmeiser. 1985. "Computer generation of hypergeometric random variates." _Journal of Statistical Computation and Simulation_ 22 (2): 12745. doi:[10.1080/00949658508810839][@kachitvichyanukul:1985].
*
* [@kachitvichyanukul:1985]: http://dx.doi.org/10.1080/00949658508810839
*
*
* @private
* @param {PRNG} rand - PRNG for uniformly distributed numbers
* @param {NonNegativeInteger} n1 - number of successes in population
* @param {NonNegativeInteger} n2 - number of failures in population
* @param {NonNegativeInteger} k - number of draws
* @returns {NonNegativeInteger} pseudorandom number
*/
function hin( rand, n1, n2, k ) {
var p;
var u;
var x;
if ( k < n2 ) {
p = ( factorial( n2 ) * factorial( n1 + n2 - k ) ) /
( factorial( n1 + n2 ) * factorial( n2 - k ) );
x = 0;
} else {
p = ( factorial( n1 ) * factorial( k ) ) /
( factorial( k - n2 ) * factorial( n1 + n2 ) );
x = k - n2;
}
u = rand();
while ( u > p ) {
u -= p;
p *= ( n1 - x ) * ( k - x ) / ( ( x + 1 ) * ( n2 - k + 1 + x ) );
x += 1;
}
return x;
}
// EXPORTS //
module.exports = hin;