time-to-botec/js/node_modules/@stdlib/math/base/special/frexp
NunoSempere b6addc7f05 feat: add the node modules
Necessary in order to clearly see the squiggle hotwiring.
2022-12-03 12:44:49 +00:00
..
docs feat: add the node modules 2022-12-03 12:44:49 +00:00
lib feat: add the node modules 2022-12-03 12:44:49 +00:00
package.json feat: add the node modules 2022-12-03 12:44:49 +00:00
README.md feat: add the node modules 2022-12-03 12:44:49 +00:00

frexp

Split a double-precision floating-point number into a normalized fraction and an integer power of two.

Usage

var frexp = require( '@stdlib/math/base/special/frexp' );

frexp( [out,] x )

Splits a double-precision floating-point number into a normalized fraction and an integer power of two.

var out = frexp( 4.0 );
// returns [ 0.5, 3 ]

By default, the function returns the normalized fraction and the exponent as a two-element array. The normalized fraction and exponent satisfy the relation x = frac * 2^exp.

var pow = require( '@stdlib/math/base/special/pow' );

var x = 4.0;
var out = frexp( x );
// returns [ 0.5, 3 ]

var frac = out[ 0 ];
var exp = out[ 1 ];

var bool = ( x === frac * pow(2.0, exp) );
// returns true

To avoid unnecessary memory allocation, the function supports providing an output (destination) object.

var Float64Array = require( '@stdlib/array/float64' );

var out = new Float64Array( 2 );

var y = frexp( out, 4.0 );
// returns <Float64Array>[ 0.5, 3 ]

var bool = ( y === out );
// returns true

If provided positive or negative zero, NaN, or positive or negative infinity, the function returns a two-element array containing the input value and an exponent equal to 0.

var out = frexp( 0.0 );
// returns [ 0.0, 0 ]

out = frexp( -0.0 );
// returns [ -0.0, 0 ]

out = frexp( NaN );
// returns [ NaN, 0 ]

out = frexp( Infinity );
// returns [ Infinity, 0 ]

out = frexp( -Infinity );
// returns [ -Infinity, 0 ]

For all other numeric input values, the absolute value of the normalized fraction resides on the interval [0.5,1).

Notes

  • Care should be taken when reconstituting a double-precision floating-point number from a normalized fraction and an exponent. For example,

    var pow = require( '@stdlib/math/base/special/pow' );
    
    var x = 8.988939926493918e+307; // x ~ 2^1023
    
    var out = frexp( x );
    // returns [ 0.5000263811533315, 1024 ]
    
    // Naive reconstitution:
    var y = out[ 0 ] * pow( 2.0, out[ 1 ] );
    // returns Infinity
    
    // Account for 2^1024 evaluating as infinity by recognizing 2^1024 = 2^1 * 2^1023:
    y = out[ 0 ] * pow( 2.0, out[1]-1023 ) * pow( 2.0, 1023 );
    // returns 8.988939926493918e+307
    

Examples

var randu = require( '@stdlib/random/base/randu' );
var round = require( '@stdlib/math/base/special/round' );
var pow = require( '@stdlib/math/base/special/pow' );
var BIAS = require( '@stdlib/constants/float64/exponent-bias' );
var frexp = require( '@stdlib/math/base/special/frexp' );

var sign;
var frac;
var exp;
var x;
var f;
var v;
var i;

// Generate random numbers and break each into a normalized fraction and an integer power of two...
for ( i = 0; i < 100; i++ ) {
    if ( randu() < 0.5 ) {
        sign = -1.0;
    } else {
        sign = 1.0;
    }
    frac = randu() * 10.0;
    exp = round( randu()*616.0 ) - 308;
    x = sign * frac * pow( 10.0, exp );
    f = frexp( x );
    if ( f[ 1 ] > BIAS ) {
        v = f[ 0 ] * pow( 2.0, f[1]-BIAS ) * pow( 2.0, BIAS );
    } else {
        v = f[ 0 ] * pow( 2.0, f[ 1 ] );
    }
    console.log( '%d = %d * 2^%d = %d', x, f[ 0 ], f[ 1 ], v );
}